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Introduction |: Transitive Distance (TD) Approximating OCTD with Random Subsampling
+ Math Definition: Dr(z), 7) = minmaxid(e)} and Diversified Spanning Graphs

XQ\. v @ .. PE\ ¢ Theorem 3 gives a practical solution to the computation of TD through MST.
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Q@ .,i ® ° @ .,.. O ¢ No similar theorems apply for OCTD because of the path order constraint.
@ ® p e /i /S 0@ Finding the exact OCTD becomes infeasible when dataset size is large.
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¢ Theorem 1: TD is an ultra-metric. I I e — O o O O O
¢ Theorem 2: Every finite ultrametric space oo o 8 | o °® © o o °® © o o ° © o o ° © o
with n distinct points can be isometrically | .~ % | 7 s Approximation flow: 1. Original dataset. 2. Subsampled data and the con-
embedded into an n-1 dim Euclidean space. | S ] | structed clique. 3. Connecting non-sampled data to nearest sampled ones to
¢+ Theorem 3: Given a weighted graph with [ % & J veR® form a spanning graph. 4. Obtain TD from the spanning graph using MST.

edge weights, each transitive edge lies on the minimum spanning tree (MST).
¢ Theorem 4: The maximum possible path order on the spanning graph Gs is up-

Introduction II: TD Clustering per bounded by |S] +2.

¢ Remark: The pairwise TD matrix obtained on Gs is order-constrained and can

¢ Under TD embedding, data from the same cluster becomes compact. It is »e used to approximate the true OCTD.

therefore desirable to perform clustering in the embedded space.
¢ Repeat T times diversify spanning graphs, each returning a single TD matrix.

¢ Intuitively, TD clustering can be regarded as an approximate spectral clustering berform element-wise min pooling on the stack of TTD matrices

(SC) where TD embedding is similar to eigen decomposition.

Algorithm-1 (Non-SVD): 6. E.'\?.?Sep".f;‘.?’rf;e
: G2
¢ Treat each row of TD matrix as embedded data and apply k-means. )
¢ Produces similar clustering results as directly performing k-means in the em- :
G.D

bedded space. (K-means Duality)

Algorithm-2 (SVD): ¢+ Unfortunately, OCTD (Min) is not a metric. One can also use mean pooling in-

. . - *
¢ Given a computed TD matrix D, perform SVvD: ) = U2V stead of min pooling to sub-optimally approximate OCTD but hold metricity.
¢ Treat each row from the top several columns with largest eigenvalues as data

samples, and perform k-means. Expe rimental Resu |tS

Toy Example Datasets
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¢ TD is sensitive to short links (see the following left figure). The additional con- s} . e e s s
straint on path order is able to introduce more robustness. WIS N o i @ 0 ¢ Nout
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100F 0 et e l 100r 0 et e | Method Aggregation Bridge Compound Flame Jain  Path. Spiral TwoDiam. Gaussian  R15
Kms (Euc) 93.91 99.14 83.21 83.75  T78.28  T4.58 33.97 100 93.13 92.5
%o 0 5 100 150 200 250 300 350 %o 0 50 100 150 200 250 300 350 SC 99.37 99.14 91.73 97.92 100  87.63 100 100 95.2 99.67
Ncut 99.37 99.14 86.72 98.75 77.48 98.66 87.18 100 95.8 99.67
. . . . TD+SVD 87.94 60.78 99.5 98.75 100 96.99 100 99.25 78.6 92.33
Clustering with TD Clustering with (Approx.) OCTD OCTD (Min) 99.87 9957  99.75 100 100 96.66 100 100 05.33 99
OCTD (Mean) 99.75 99.57 99.75 98.33 100 96.32 100 100 95.8 99.67
Intuition: Path-Order Constraint Image Datasets
Extended Yale B Dataset (ExYB)
Euclidean Distance Transitive Distance " 2414 frontal-faces (192 x 168) of 38 subjects.
= Resize imagesto 55 x 48 goss | g
= Weak cluster flexibility o = Strong cluster flexibility = PCA whitening with 99% of energy
Trade'Off a AR Face Dataset (AR) o84 f
u Strong cluster sha pe prior = \Weak cluster Shape prior = 50 male and 50 female subjects, 1400 cropped faces ol e - e e - -
. . Sampling rate (log spaced) Number of samplings (log spaced)
. M bust nst _— bust inst " Resize images to 55 x 40 Parameter experiment. Left: Varying the sampling rate and fixing
ore robustiness agains €SS robustness agains = PCA whitening with 98% of energy T = 500. Right: Varying T and fixing the sampling rate to be 0.06.

USPS Dataset

clustering ambiguity clustering ambiguity ) S Method | Kms  SC  Necut TD | OCTD (Min)
9295 16 x 16 hand written digit images ExYB | 4471 87.28 83.76 8281 | 9064
s Path order = 2 m Large path order " PCAwhitening with 98.5% of energy AR 64.29 80.64 87.29 83.85 88.28
USPS | 64.38 8294 8238 54.31 85.13
Large-Scale Speech Datasets
Path Order: _
= O(P4)=6 Method Kms (Euclid) Kms (Cos)  SC___ Neut TD+SVD | OCTD (Min) OCTD (Mean)
NIST 04 66.32 81.49 83.32 8049  77.17 84.9 8451
= O(P,)=2 NIST 05 72.99 77.08 743 761 T72.86 77.87 73.04
NIST 06 79.84 86.43 80.72 844  87.07 88.29 83.47
. - - - NIST 08 74.52 7858  81.51 62.65  74.13 77.91 78.81
Eucllldean dist. can b,e viewed as a NIST Combined 70.85 78.97 76.21  71.66  72.07 80.89 77.24
special case of TD with order = 2. Switch Board 86.03 90.80 87.79 80.83  78.73 87.53 90.88




