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Abstract

We propose an unsupervised image segmentation method
based on texton similarity and mode seeking. The input im-
age is first convolved with a filter-bank, followed by soft
clustering on its filter response to generate textons. The in-
put image is then superpixelized where each belonging pixel
is regarded as a voter and a soft voting histogram is con-
structed for each superpixel by averaging its voters’ pos-
terior texton probabilities. We further propose a modified
mode seeking method - called convex shift - to group su-
perpixels and generate segments. The distribution of super-
pixel histograms is modeled nonparametrically in the his-
togram space, using Kullback-Leibler divergence (K-L di-
vergence) and kernel density estimation. We show that each
kernel shift step can be formulated as a convex optimization
problem with linear constraints. Experiment on image seg-
mentation shows that convex shift performs mode seeking
effectively on an enforced histogram structure, grouping vi-
sually similar superpixels. With the incorporation of texton
and soft voting, our method generates reasonably good seg-
mentation results on natural images with relatively complex
contents, showing significant superiority over traditional
mode seeking based segmentation methods, while outper-
forming or being comparable to state of the art methods.

1. Introduction

Before the introduction of “Bag of words model” (BoW)
into computer vision, one could find the early applications
of BoW in natural language processing (NLP) [9]. The
BoW in NLP is a popular method that ignores the word or-
ders for representing documents. The BoW model allows a
dictionary-based modeling, and each document looks like
a “bag” which contains some words from the dictionary.
Computer vision researchers use a similar idea for image

∗This work has been supported in part by the Research Grants Coun-
cil (RGC) of the Hong Kong Special Administrative Region, China (GRF
Project no. 610109 and 610210), and the National Natural Science Foun-
dation of China (NSFC) (project No.61005011/F030403).

(a) (b)

(c) (d)

Figure 1. Segmentations of an image from the Berkeley Segmen-
tation Dataset. (a) The original image. (b) Segmentation gener-
ated by mean shift. (c) Segmentation generated by quick shift.
(d) Result obtained by the proposed algorithm, showing consid-
erable improvement in terms of segmentation quality. Notice that
although there is no human interaction, the produced foreground
object segment highly overlaps the groundtruth.

representation. To represent an image using BoW model, an
image can be treated as a document. And features extracted
from the image are considered as the “words”. Extraction
of words often includes following three steps: feature de-
tection, feature description and codebook generation.[ 10] A
definition of the BoW model can be the “histogram repre-
sentation based on independent features” [11]. It is a widely
used basic element for further processing in computer vi-
sion, especially in object categorization. Content based im-
age indexing and retrieval (CBIR) is also an early adopter
of this image representation technique [12].

Our method shares similar idea with BoW except that the
“word” we extract is textual information. What we need is
a compact representation for the range of different appear-
ances of an object and this representation should be con-
gruous with human perception of similarity. Texton have
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been proven effective in categorizing materials [16] as well
as generic object classes [17]. Here we use textons [13] for
describing human textual and color perception. To establish
a metric for region similarity and dissimilarity, we construct
a histogram for each superpixel region to quantitatively in-
dicate the proportion of contribution from a specific texton.
The texton thus plays a similar role as a “codeword”.

In computer vision, the problem of segmentation and
perceptual grouping remains challenging despite years of
extensive study. The essence of segmentation can be re-
garded as clustering with elaborately designed pixel fea-
tures and inter-pixel distance measures that tries to approx-
imate humans visual perception of similarity. In the fea-
ture space, the cluster shape of features belonging to an im-
age segment is often irregular. The fact that mode seeking
methods can perform arbitrary shaped clustering makes it
superior than many traditional clustering algorithms assum-
ing regular shaped clusters in terms of segmentation perfor-
mance. Despite the considerable literatures on mode seek-
ing, we observe that many emphasize their applications in
image segmentation while potentially posing them as low
level preprocessing oriented [1] [3, 4, 5, 6]. Due to the
pixel-wise operation, there has not been much fundamental
improvement in terms of segmentation quality, as illustrated
in Fig.1(b) and Fig.1(c). This tends to generate inferior seg-
mentation when dealing with complex images, while image
scenes often do contain abundant artificial or natural tex-
tural information. The concept of histogram based mode
seeking have been introduced in mean shift tracking [ 2]
[18, 19, 20], yet few have explored its application in image
segmentation.

Our method combines the advantage of both mode seek-
ing clustering and superpixel textual content which is far
more informative than pixel-wise color. Instead of oper-
ating with pixels, we propose region-wise operations and
we formulate the mode seeking problem into a constrained
optimization problem for each kernel shift step. Region-
wise operation allows one to investigate and design features
much more versatile and powerful. Our method thus pos-
sesses the potential to outperform the segmentations pro-
duced by traditional mode seeking methods where simple
pixel-wise features are not able to adequately describe the
visual similarity. Such scheme also considerably alleviates
the computational power required. Without loss of gener-
ality, suppose the complexity of a mode seeking algorithm
is O(N2) where N is the total number of pixels. Consider
the superpixelized image with N ′ regions (or superpixels).
If N = 100N ′, then for the same mode seeking algorithm
the complexity has been reduced to 1/10000 of the original
complexity. In practice, the overall algorithm complexity
might not be considered such ideally. It does not hinder us,
however, to show the potential of complexity reduction by
region-wise operation.

2. Related Works

There exist considerable previous literatures related to
our method concerning the aspects of texton representation
and mode seeking. In review of these methods, most of
them can be categorized into the following categories:

2.1. Relation with Texton Segmentation

In [13], Malik et al. proposed a image segmentation
method based on normalized cuts with contour and tex-
ture analysis. A 40-D filter bank is used to convolve with
the input image and to produce the response image. They
also construct texton histogram for overlapped dense re-
gions and χ2 is adopted as the distance metric between
two histograms. K-means is used to generate textons, turn-
ing the voting for histogram construction into hard deci-
sions. Works in [14, 15] adopted similar strategies for tex-
ture similarity analysis. Different from their method, our
method adopts EM soft clustering, which, in comparison
with k-means, models the distribution much better since k-
means only assumes spherical, uniform cluster shapes. Ac-
cordingly, we observe a boost in segmentation performance
using textons generated by EM. In addition, the posterior
probabilities of belonging to textons returned by EM enable
one to adopt soft voting. Histograms constructed by soft
clustering tend to reflect region similarity more accurately
and the performance are less dependent on the number of
textons.

2.2. Relation with Non-Euclidean Mode Seeking

Mode seeking provides a versatile tool for feature space
analysis by finding local density maxima (or modes) in the
feature space. In mode seeking clustering, data belonging to
the same cluster fall within the same density attraction basin
where the attraction force points to the direction that mostly
increases the the estimated density. The feature space is par-
titioned by several clusters or basins with density maxima
being the cluster centroids (the lowest points of basins).

Mean shift is regarded as one of the most canonical mode
seeking algorithms with numerous real applications in com-
puter vision. First proposed in [7] in 1975 and generalized
in [8] in 1995, the method has not received wide attention
until the publication of [1] in 2002. The method only as-
sumes Mahalanobis distance metric where Euclidean dis-
tance is a special case.

Several works tried to introduce more versatile distance
metrics into mode seeking. Zhao et al. [19] proposed a dif-
ferentiable Earth Mover’s Distance (EMD) that can be used
as a distance metric for mean shift tracking. Leichter [20]
proposed an alternative trackers that employ cross-bin met-
rics based on Mean Shift (MS) iterations. Both methods,
however, only aim at tracking problem.

There have been interesting efforts that generalize mean
shift to non-linear manifolds and intrinsically model curved



Figure 2. Algorithmic flow of the proposed method. Columns 1 to 4 respectively correspond to the original image, texton map (each
pixel assigned to the most probable texton), superpixelized image and the final segmentation result. The histogram bandwidth and spatial
bandwidth are respectively set to 1.2 and 60.

mean shift space [28, 29]. In contrast, we enforce the struc-
ture of the mean histogram directly as an explicit constraint.
While intrinsic formulation is of great theory interest, our
primary objective is to effectively perform mode seeking
given the problem setting for certain task.

Sheikh et al. [3] proposed medoid shift, a mode seek-
ing method that is able to adopt arbitrary, non-differentiable
distance metrics. The method essentially transforms the
mode seeking problem into a finite point searching prob-
lem. The shifted kernel location can appear at limited lo-
cations where there are data, thus only pair-wise data dis-
tance is needed and no metric differentiability is required.
As is reported by [4], however, medoid shift is prone to
over-fragmentation when data is sparse. On the other hand,
the computation complexity of medoid shift increases sig-
nificantly with respect to the increase of data size. Only
simple, small scale (with respect to image size and num-
ber) image segmentation experiments were tested in [3].
Our method does not find approximate shifting locations
but seeks an exact, optimal location for each kernel shift
step. The proposed method thus works better with relatively
sparse data, while its computational complexity increases
relatively slower with the increase of data size.

3. The Proposed Image Segmentation Method

Our segmentation method consists of three major steps to
perform segmentation. For any input image, the algorithm
automatically decides the segment number with no human
interaction. An algorithmic flow is illustrated in Fig.2.

3.1. Representation by Textons

Using raw pixel-wise features is not be robust to noise
and is difficult to extract invariant properties from the im-
ages. We convolve the image with a set of 17 filters (filter
bank) to generate 17 response images, constructing a com-
pact pixel-level image representation. In detail, we adopt
a bank of 17 filters of size 15 × 15 which is composed of
Gaussians with 3 different scales (1, 2, 4) applied to LAB
channels, Lapacians of Gaussians with 4 different scales (1,
2, 4, 8) and the derivatives of Gaussians with two different

scales (2, 4) for each axis (x and y). The filter bank we
adopted is exactly the same as that adopted by [15, 17].

The obtained 17-D response image pixels are to be clus-
tered to generate textons. Unlike popular texton generation
schemes which commonly use k-means as the clustering
method, we adopt K cluster Expectation-Maximization to
softly cluster response image pixels and generate K tex-
tons. Since k-means only assumes spherical cluster shape
which can be far from real data distribution, its texton rep-
resentation and the region texton statics are far inferior than
EM. Using EM we are also able to obtain the K posterior
probabilities of belonging to the K textons for each pixel.

3.2. Superpixelization and Local Bag of Textons

To reduce computational complexity, we use the method
proposed by X. Ren et al. [14, 21, 22] to generate super-
pixelized images1. The parameters N sp, N sp2 and N ev
corresponding to the number of superpixels coarse/fine and
the number of eigenvalues are first respectively set to 200,
1000 and 40. By this set of parameters we are able to obtain
coarsely and finely superpixelized images with more than
200 and 1000 superpixels respectively.

For each coarse superpixel and fine superpixel, we softly
vote its texton frequency by averaging posterior texton
probabilities over all member pixels and construct a his-
togram for each superpixel. We call this method “Bag of
textons” since there is no constraint on the textons sequence.
And just like BoW where frequency of words characterizes
the document type, the frequency of textons here character-
izes the region appearance and defines the similarities be-
tween any two regions.

The set of coarse superpixels are the basic units we want
to cluster to generate final segmentations, while the set of
fine superpixels serve as mode seeking samples for pdf esti-
mation. For each coarse superpixel, a histogram kernel and
a spatial kernel are initialized with respect to the superpixel
histogram and superpixel spatial location. Mode seeking is
then performed for each coarse superpixel based on sam-
ples (fine superpixel histograms and spatial locations). The

1The corresponding Matlab code is kindly available at
http://www.cs.sfu.ca/∼mori/research/superpixels/
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advantage of such strategy is that larger coarse superpixels
speeds up the algorithm and contain more region informa-
tion, while the larger number of fine superpixels give ade-
quate sampling support to estimate a better pdf.

3.3. Proposed Convex Shift Algorithm

For traditional mean shift algorithm, suppose xr and xs

respectively represents the d dimensional feature space vec-
tor and 2 dimensional spatial coordinate of an image pixel.
For mean shift based image segmentation, one adopts the
following multivariate kernel density estimator:

f̂hr,hs(x
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2
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where the function k(x) is the profile of a kernel and C is
a normalization constant that makes the above multivariate
kernel integrates to one. hr > 0 and hs > 0 are the smooth-
ing parameters called the bandwidth. Taking the derivative
of f̂(xr,xs) with respect to xr and defining the new kernel
profile g(x) = −k′(x), one has:
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The last term of equation (2) is the mean shift for the
feature space kernel.
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The mean shift vector for the spatial kernel can be obtained
similarly.

Since we use histograms to model region statistics, we
adopt K-L divergence to measure the distance between two
histograms:

dKL(H,K) =

d∑
p=1

hp log
hp

kp
.

where d is the histogram dimension, H = [h1, h2, ..., hd]
�

and K = [k1, k2, ..., kd]
� are two histograms with the con-
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the histogram of the ith sample (fine superpixel) is denoted
as xh

i = [xh
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�. Plugging in the K-L di-
vergence distance measure, we have the following density
estimator:
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The mode seeking problem thus becomes increasing the es-
timated density subject to the sum of histogram bins in each
color channel equals to 1, which is a constrained gradient
ascent problem. For histogram kernel, we introduce linear
relaxation using K-L divergence kernel with a linear profile,
while for spatial kernel, the normal kernel is adopted. No-
tice that the K-L divergence kernel is meaningful only when
the histogram structure is preserved. The density estimator
thus becomes:
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To solve the problem, rewrite (12) into the following form:

xr(l+1) =

∑N
i=1 x

r
i g(‖xr(l)−xr

i

hr
‖2)k(‖xs(l)−xs

i

hs
‖2)∑N

i=1 g(‖xr(l)−xr
i

hr
‖2)k(‖xs(l)−xs

i

hs
‖2)

= argmin
xr

N∑
i=1

‖xr
i − xr‖2

g(‖x
r(l) − xr

i

hr
‖2)k(‖x

s(l) − xs
i

hs
‖2).

(8)

wherexr(l) denotes the color space kernel location in the lth
iteration. Recall the K-L divergence kernel we introduced.
The linear kernel profile yields:

gKL(x) =

{
1 0 ≤ x ≤ 1
0 otherwise

. (9)

Plugging the kernel profile gKL(x) and the K-L divergence
measure in equation (8), and changing the feature space ker-
nel into the histogram kernel, the histogram kernel shift can
be formulated as solving the following convex problem:

min
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where S(l) = {xh
i |dKL(x

h(l),xh
i ) ≤ h2

h}. One can ver-
ify the equivalence between solving the above problem and
increasing the density estimator in equation (11). We will
verify this property in the next subsection. For the spatial
kernel, the strategy for calculating the spatial kernel shift is
identical to that in mean shift:
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The segmentation algorithm can be described as follows:
1. For each coarse superpixel, initialize its histogram ker-
nel and spatial kernel according to the region color statistics
and the mean spatial coordinate of the contained pixels.
2. Recursively shift the histogram kernel by solving the
above convex problem using a convex solver and shift the
spatial kernel according equation (10) until convergence.
3. Group the set of coarse superpixels that share similar
histogram kernel locations.

3.4. Algorithm Convergence

Definition 3.1 For any sequential step l and l + 1 and the
corresponding histogram kernel location xh(l) and xh(l +
1), the transitory density estimation is defined as:
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Lemma 3.1 f̂ thh,hs
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Proof: According to equation (4), we have:
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According to convex shift which is in the form of con-
strained minimization, xh(l+1) is obtained through min-
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∑
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over xh, we thus directly proved Lemma 3.1.

Lemma 3.2 f̂hh,hs(x
h(l+1),xs) ≥= f̂ thh,hs

(xh(l+1),xs)

Proof: Since some of the samples belonging to the lth
kernel may go out of the range of l + 1th kernel, these

samples contributes negative values to f̂ thh,hs
(xh(l+1),xs)

while their contribution to f̂hh,hs(x
h(l+1),xs) is 0. In ad-

dition, new samples may come within the range of the
l + 1th kernel, which contributes nonnegative values to
f̂hh,hs(x

h(l+1),xs). Thus, we have the above lemma.

Theory 3.1 The estimated density monotonically increases
with each convex shift step and the algorithm converges.

Proof: Spatial kernel is independent with histogram kernel
and spatial kernel shift also increases the estimated density
[1]. According to Lemma 3.1 and Lemma 3.2, the esti-
mated density thus monotonically increases with iterative
histogram and spatial kernel shift. Since the estimated den-
sity is upper bounded, the algorithm is guaranteed to con-
verge.

4. Experimental Results

We perform segmentation test on a number of natural im-
ages selected from the Berkeley Segmentation Dataset. For
convex shift, a simple postprocessing is used to eliminate
single superpixels by merging them into the most similar
neighboring regions. The bandwidth parameters hh, hs are
respectively set to 1.2 and 60. Our segmentation results are
compared with segmentations obtained by quick shift and
mean shift. We also compare our method with state of the
art segmentation methods such as the Fusion of Clustering
Results (FCR) method [23], the Probabilistic Rand Index
Fusion (PRIF) method [26] and gPb-owt-ucm [30]. We use
the VLFeat Matlab package [29] to implement quick shift.
The parameters ratio, kernelsize and maxdist are respec-
tively set to 0.5, 12 and 30, which is observed to be the best
trade off to avoid both oversmoothing and oversegmenta-
tion. For the majority of mean shift experiments, we set
hs, hr and minimum region size M respectively to be 8, 7
and 100 - the set of segmentation parameters adopted in [ 1].
Smaller bandwidth parameters are chosen for image 4, 19,
23, 24 in order to prevent serious over-merging. We adopt
a unified UCM threshold for gPb-owt-ucm and tune it to
visually optimize its segmentation. The comparison of seg-
mentation results is illustrated in Fig.3 and Fig.4. Experi-
mental results indicate the superiority of using the proposed
method, especially on those images being more complex
and textured. Under the scheme of “Bag of textons”, our
method significantly outperforms quick shift and mean shift
for incorporating abundant textual information. Our method
also slightly outperforms FCR and PRIF - which are well-
designed state of the art segmentation methods - and is com-
parable with gPb-owt-ucm. We observe that gPb-owt-ucm
indeed is very powerful but does suffer from over-merging
through weak boundary and over-segmentation caused by
strong intra-region variation (common problems with con-
tour finding methods). Notice that in contrast to gPb-owt-



Figure 3. Comparison of segmentation results obtained by different methods. Row 1 to 7 respectively correspond to original images and
results produced by quick shift, mean shift, FCR, PRIF, gPb-owt-ucm and the proposed method.



Figure 4. Comparison of segmentation results obtained by different methods. For every 7 rows, row 1 to 7 respectively correspond to the
original images and results produced by quick shift, mean shift, FCR, PRIF, gPb-owt-ucm and the proposed method.

ucm, we have not even elaborately design the spatial con-
straint and local discontinuity rule to obtain better segmen-
tations. Previous works such as [24, 25] allow one to plug in
spatial consistency information on mode seeking in a way

far better than current scheme. With better spatial consis-
tency information, a further boost of the segmentation qual-
ity is expected.



5. Conclusions and Future Works

We have proposed a mode seeking based algorithm that
can effectively segment natural color images. Compared
with traditional mode seeking based segmentation method,
the method tends to produce excellent segmentations that
are much more semantically meaningful and perceptually
congruous with human perception of similarity on complex,
textured images. In addition, our method is comparable
with state of the art segmentation methods. Processing of
the proposed method is parallelable like traditional mode
seeking methods. Thus parallel implementation is expected
to significantly speed up the algorithm’s processing speed.
Our future work will include detailed report with more com-
prehensive evaluations and further improvements.

References

[1] D. Comaniciu and P. Meer. “Mean shift: A robust ap-
proach toward feature space analysis.” IEEE Trans.
PAMI, 2002.

[2] A. Yilmaz, “Object tracking by asymmetric kernel
mean shift with automatic scale and orientation selec-
tion.” In CVPR, 2007.

[3] Y. A. Sheikh, E. A. Khan and T. Kanade. “Mode-
seeking by Medoidshifts.” In ICCV, 2007.

[4] A. Vedaldi and S. Soatto. “Quick shift and kernel
methods for mode seeking.” In ECCV, 2008.

[5] A. Vedaldi and S. Soatto. “Really quick shift: Image
segmentation on a GPU.” In Workshop on Computer
Vision using GPUs, held with ECCV, 2010.

[6] K. Zhang, J. T. Kwok and M. Tang. “Accelerated con-
vergence using dynamic mean shift.” In ECCV, 2006.

[7] K. Fukunaga and L. Hostetler. “The estimation of the
gradient of a density function with application in pat-
tern recognition.” IEEE Trans. Info. Theory, 1975.

[8] Y. Cheng. “Mean shift, mode seeking and clustering.”
IEEE Trans. PAMI, 1995.

[9] D. Lewis. “Naive (Bayes) at forty: The independence
assumption in information retrieval”. In ECML, 1998.

[10] FF. Li and P. Perona. “A Bayesian hierarchical model
for learning natural scene categories”. In CVPR, 2005.

[11] FF. Li, R. Fergus and A. Torralba. “Recognizing
and learning object categories”. In CVPR 2007 short
course, 2007.

[12] G. Qiu. “Indexing chromatic and achromatic pat-
terns for content-based colour image retrieval”. Pat-
tern Recognition, 2002.

[13] J. Malik, S. Belongie, T. Leung and J. Shi. “Contour
and texture analysis for image segmentation”. IJCV,
2001.

[14] X. Ren and J. Malik. “Learning a classification model
for segmentation”. ICCV, 2003.

[15] J. Shotton. “TextonBoost for image understanding:
Multi-class object recognition and segmentation by
jointly modeling texture, layout, and context”. IJCV,
2007.

[16] M. Varma and A. Zisserman. “A statistical approach to
texture classification from single images”. IJCV, 2005.

[17] J. Winn, A. Criminisi and T. Minka. “Categoriza-
tion by learned universal visual dictionary”. In ICCV,
2005.

[18] D. Comaniciu, V. Ramesh and P. Meer. “Real-time
tracking of non-rigid objects using mean shift”. In
CVPR, 2000.

[19] Q. Zhao, Z. Yang, H. Tao. “Differential Earth Movers
Distance with its applications to visual tracking”.
IEEE Trans. PAMI, 2010.

[20] I. Leichter. “Mean shift trackers with cross-bin met-
rics”. Accpted to IEEE Trans. PAMI, 2011.

[21] G. Mori, X. Ren, A. Efros, and J. Malik. “Recovering
human body configurations: Combining segmentation
and recognition”. In CVPR, 2004.

[22] G. Mori. “Guiding model search using segmentation”.
In ICCV, 2005.

[23] M. Mignotte. “Segmentation by fusion of histogram-
based k-means clusters in different color spaces”.
IEEE Trans. Image Proc., 2008.

[24] Z. Yu, O. Au, K. Tang and C. Xu. “Nonparametric
density estimation on a graph: Learning framework,
fast approximation and application in image segmen-
tation”. In CVPR, 2011.

[25] H. Liu and S. Yan. “Robust graph mode seeking by
graph shift”. In ICML, 2010.

[26] M. Mignotte. “A label field fusion Bayesian model and
its penalized maximum rand estimator for image seg-
mentation”. IEEE Trans. on Image Proc., 2010.

[27] R. Subbarao and P. Meer. “Nonlinear mean shift for
clustering over analytic manifolds”. In CVPR, 2006.

[28] H.E. Cetingul and R. Vidal. “Intrinsic mean shift for
clustering on Stiefel and Grassmann manifolds”. In
CVPR, 2009.

[29] A. Vedaldi and B. Fulkerson. “VLFeat - an open
and portable library of computer vision algorithms”.
http://www.vlfeat.org/, 2008.

[30] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. “Con-
tour Detection and Hierarchical Image Segmentation”.
IEEE Trans. PAMI, 2010.


