Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training

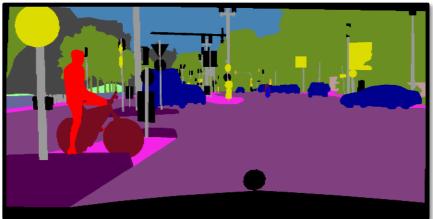
Presenter: Zhiding Yu

Learning & Perception Research Group

NVIDIA Research

Obtaining Per-Pixel Dense Labels is Hard

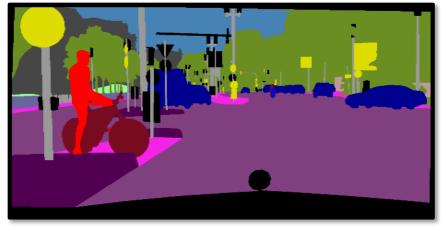
Real application often requires model robustness over scenes with large diversity


Different cities, different weather, different views

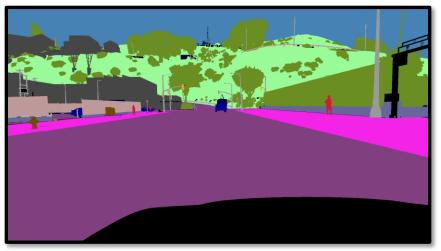
Large scale annotated image data is beneficial

Annotating large scale real world image dataset is expensive

Cityscapes dataset: 90 minutes per image

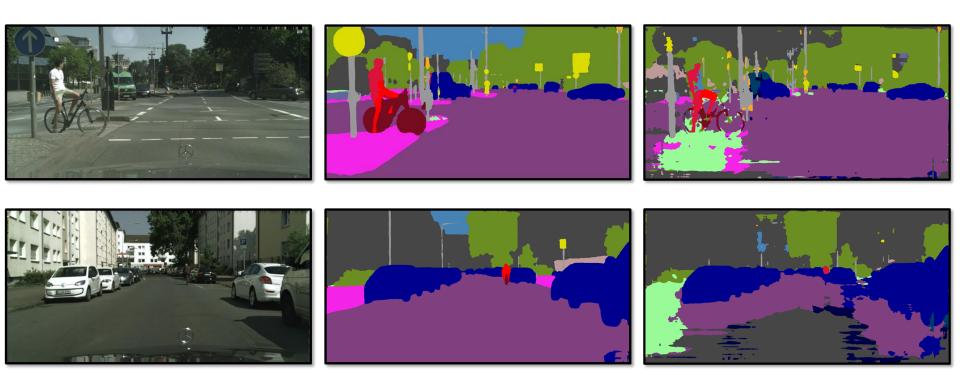


Use Synthetic Data to Obtain Infinite GTs?


Original image from Cityscapes

Human annotated ground truth

Original image from GTA5

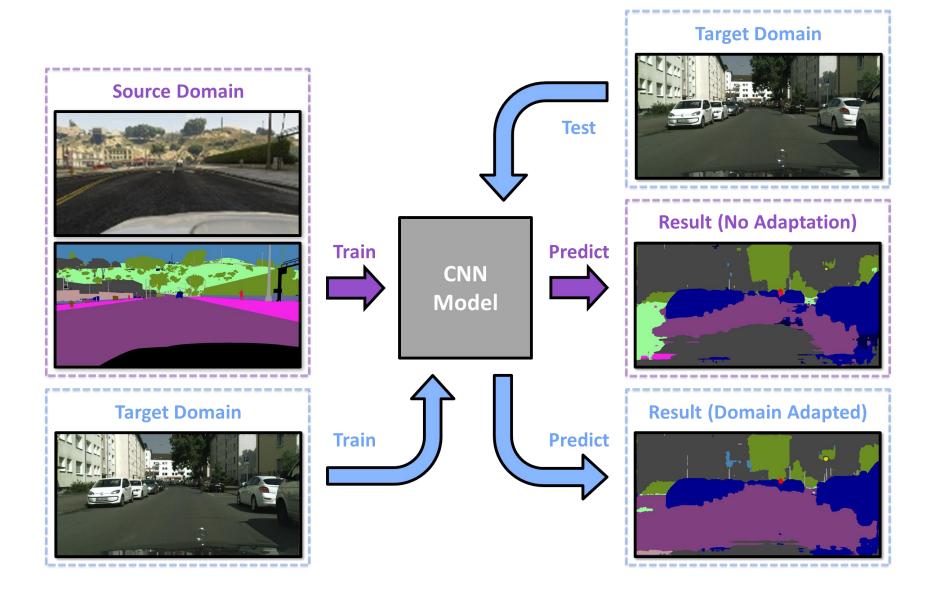


Ground truth from game Engine

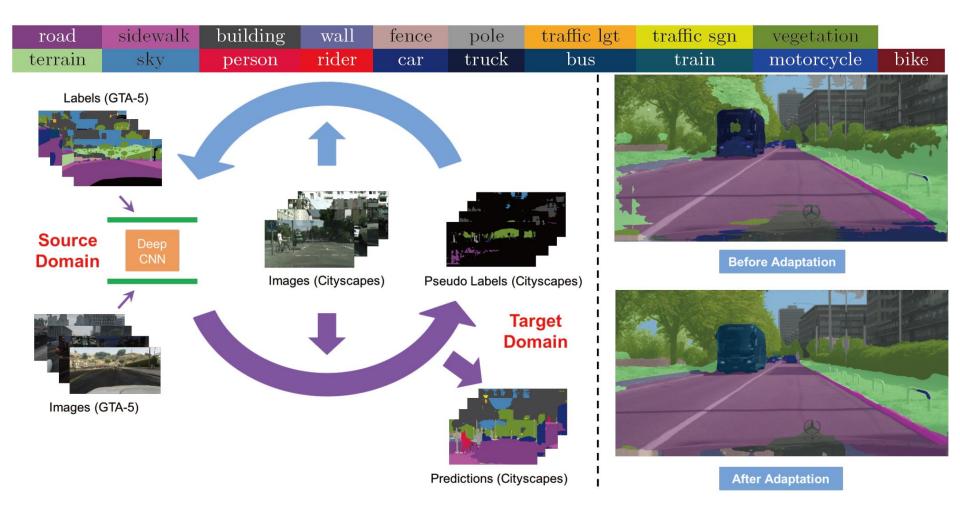
outer	road	sidewalk	building	wall	fence	pole	traffic lgt	$\operatorname{traffic}\operatorname{sgn}$	vegetation	
NG	$\operatorname{terrain}$	$_{ m sky}$	person	rider	car	truck	\mathbf{bus}	train	$\operatorname{motorcycle}$	bike

Drop of Performance Due to Domain Gaps

Cityscapes images


Model trained on Cityscapes

Model trained on GTA5



er	road	sidewalk	building	wall	fence	pole	traffic lgt	$\operatorname{traffic}\operatorname{sgn}$	vegetation	
G	$\operatorname{terrain}$	sky	person	rider	car	truck	bus	train	$\operatorname{motorcycle}$	bike

Unsupervised Domain Adaptation

Proposed Iterative Framework

Preliminaries and Definitions

Fine-tuning for Supervised Domain Adaptation

$$\min_{\mathbf{w}} \mathcal{L}_S(\mathbf{w}) = -\sum_{s=1}^{S} \sum_{n=1}^{N} \mathbf{y}_{s,n}^{\top} \log(\mathbf{p}_n(\mathbf{w}, \mathbf{I}_s)) - \sum_{t=1}^{I} \sum_{n=1}^{N} \mathbf{y}_{t,n}^{\top} \log(\mathbf{p}_n(\mathbf{w}, \mathbf{I}_t))$$

where: I: input image (crop) p: pixel class probability vector y: pixel label vector
w: network parameters s: source image index t: target image index

Self-Training for Unsupervised Domain Adaptation $\min_{\mathbf{w}, \hat{\mathbf{y}}} \mathcal{L}_U(\mathbf{w}, \hat{\mathbf{y}}) = -\sum_{s=1}^{S} \sum_{n=1}^{N} \mathbf{y}_{s,n}^{\top} \log(\mathbf{p}_n(\mathbf{w}, \mathbf{I}_s)) - \sum_{t=1}^{T} \sum_{n=1}^{N} \hat{\mathbf{y}}_{t,n}^{\top} \log(\mathbf{p}_n(\mathbf{w}, \mathbf{I}_t))$ s.t. $\hat{\mathbf{y}}_{t,n} \in {\mathbf{e}^{(i)} | \mathbf{e}^{(i)} \in \mathbb{R}^C}, \forall t, n$ where: $\hat{\mathbf{y}}$: pseudo label vector $\mathbf{e}^{(i)}$: one-hot vector

The Vanilla Self-Training (ST) Framework

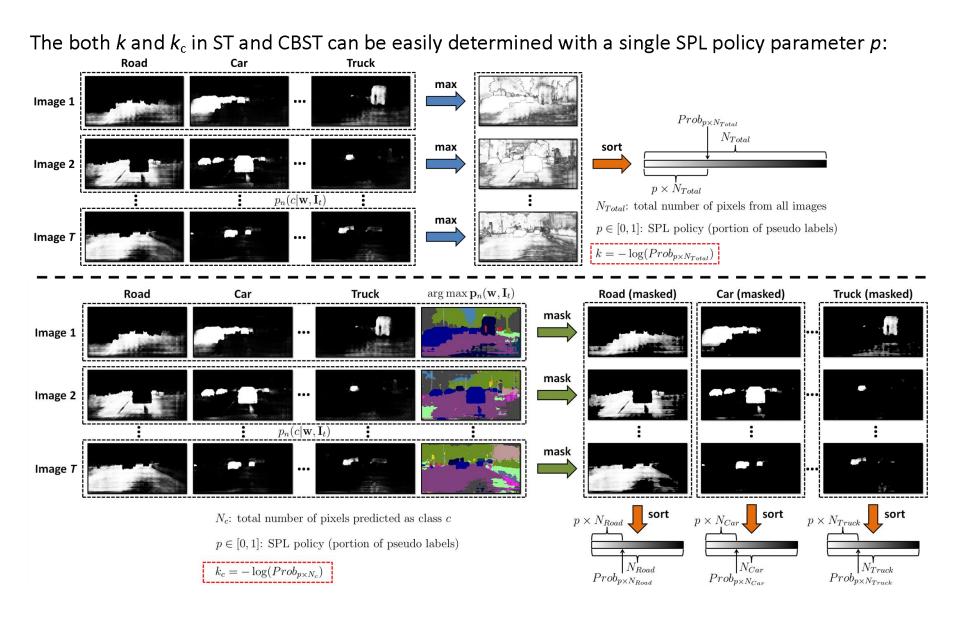
$$\min_{\mathbf{w}, \hat{\mathbf{y}}} \mathcal{L}_{ST}(\mathbf{w}, \hat{\mathbf{y}}) = -\sum_{s=1}^{S} \sum_{n=1}^{N} \mathbf{y}_{s,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{s})) - \sum_{t=1}^{T} \sum_{n=1}^{N} \left[\hat{\mathbf{y}}_{t,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{t})) + k | \hat{\mathbf{y}}_{t,n} |_{1} \right]$$

s.t. $\hat{\mathbf{y}}_{t,n} \in \{\{\mathbf{e}^{(i)} | \mathbf{e}^{(i)} \in \mathbb{R}^{C}\} \cup \mathbf{0}\}, \forall t, n$
 $k > 0$

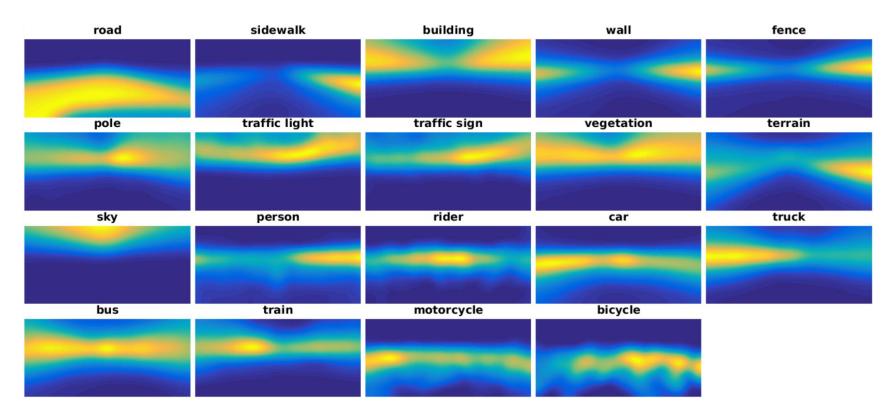
The cost can be minimized via mixed integer programming, which leads to the following solution:

ENGINEERING

Class-Balanced Self-Training (CBST)


$$\min_{\mathbf{w}, \hat{\mathbf{y}}} \mathcal{L}_{CB}(\mathbf{w}, \hat{\mathbf{y}}) = -\sum_{s=1}^{S} \sum_{n=1}^{N} \mathbf{y}_{s,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{s})) - \sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{c=1}^{C} \left[\hat{y}_{t,n}^{(c)} \log(p_{n}(c | \mathbf{w}, \mathbf{I}_{t})) + k_{c} \hat{y}_{t,n}^{(c)} \right]$$

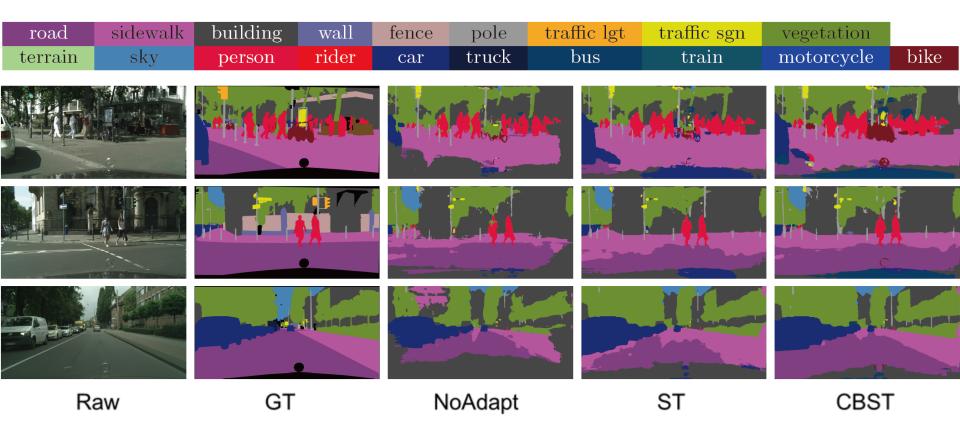
s.t. $\hat{\mathbf{y}}_{t,n} = [\hat{y}_{t,n}^{(1)}, ..., \hat{y}_{t,n}^{(C)}] \in \{\{\mathbf{e}^{(i)} | \mathbf{e}^{(i)} \in \mathbb{R}^C\} \cup \mathbf{0}\}, \forall t, n$ $k_c > 0, \forall c$


Again using mixed integer programming, one obtains the following solution:

$$\hat{y}_{t,n}^{(c)*} = \begin{cases} 1, \text{ if } c = \arg\max_{c} \frac{p_n(c|\mathbf{w}, \mathbf{I}_t)}{\exp(-k_c)}, \\ \frac{p_n(c|\mathbf{w}, \mathbf{I}_t)}{\exp(-k_c)} > 1 \\ 0, \text{ otherwise} \end{cases} \\ \mathbf{Car} \\ \mathbf{Car} \\ \mathbf{Truck} \\ \mathbf{Truck$$

Self-Paced Learning Policy Design

Incorporating Spatial Priors (CBST-SP)



$$\min_{\mathbf{w}, \hat{\mathbf{y}}} \mathcal{L}_{SP}(\mathbf{w}, \hat{\mathbf{y}}) = -\sum_{s=1}^{S} \sum_{n=1}^{N} \mathbf{y}_{s,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{s})) - \sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{c=1}^{C} \left[\hat{y}_{t,n}^{(c)} \log(q_{n}(c)p_{n}(c|\mathbf{w}, \mathbf{I}_{t})) + k_{c} \hat{y}_{t,n}^{(c)} \right]$$

s.t. $\hat{\mathbf{y}}_{t,n} \in \{\{\mathbf{e} | \mathbf{e} \in \mathbb{R}^{C}\} \cup \mathbf{0}\}, \forall t, n$
 $k_{c} > 0, \forall c$

Experiment: Cityscapes → NTHU

City	Method	Road	SW	Build	TL	TS	Veg.	Sky	PR	Rider	Car	Bus	Motor	Bike	Mean
	Source Dilation-Frontend [10]	77.7	21.9	83.5	0.1	10.7	78.9	88.1	21.6	10.0	67.2	30.4	6.1	0.6	38.2
	GCAA [10]	79.5	29.3	84.5	0.0	22.2	80.6	82.8	29.5	13.0	71.7	37.5	25.9	1.0	42.9
Rome	DeepLab-v2 [36]	83.9	34.3	87.7	13.0	41.9	84.6	92.5	37.7	22.4	80.8	38.1	39.1	5.3	50.9
	MAA [36]	83.9	34.2	88.3	18.8	40.2	86.2	93.1	47.8	21.7	80.9	47.8	48.3	8.6	53.8
	Source Resnet-38	86.0	21.4	81.5	14.3	47.4	82.9	59.8	30.8	20.9	83.1	20.2	40.0	5.6	45.7
	ST	85.9	20.2	84.3	15.0	46.4	84.9	73.5	48.5	21.6	84.6	17.6	46.2	6.7	48.9
	CBST	87.1	43.9	89.7	14.8	47.7	85.4	90.3	45.4	26.6	85.4	20.5	49.8	10.3	53.6
	Source Dilation-Frontend [10]	69.0	31.8	77.0	4.7	3.7	71.8	80.8	38.2	8.0	61.2	38.9	11.5	3.4	38.5
	GCAA [10]	74.2	43.9	79.0	2.4	7.5	77.8	69.5	39.3	10.3	67.9	41.2	27.9	10.9	42.5
Rio	DeepLab-v2 [36]	76.6	47.3	82.5	12.6	22.5	77.9	86.5	43.0	19.8	74.5	36.8	29.4	16.7	48.2
	MAA [36]	76.2	44.7	84.6	9.3	25.5	81.8	87.3	55.3	32.7	74.3	28.9	43.0	27.6	51.6
	Source Resnet-38	80.6	36.0	81.8	21.0	33.1	79.0	64.7	36.0	21.0	73.1	33.6	22.5	7.8	45.4
	ST	80.1	41.4	83.8	19.1	39.1	80.8	71.2	56.3	27.7	79.9	32.7	36.4	12.2	50.8
	CBST	84.3	55.2	85.4	19.6	30.1	80.5	77.9	55.2	28.6	79.7	33.2	37.6	11.5	52.2
	Source Dilation-Frontend [10]	81.2	26.7	71.7	8.7	5.6	73.2	75.7	39.3	14.9	57.6	19.0	1.6	33.8	39.2
	GCAA [10]	83.4	35.4	72.8	12.3	12.7	77.4	64.3	42.7	21.5	64.1	20.8	8.9	40.3	42.8
Tokyo	DeepLab-v2 [36]	83.4	35.4	72.8	12.3	12.7	77.4	64.3	42.7	21.5	64.1	20.8	8.9	40.3	42.8
	MAA [36]	81.5	26.0	77.8	17.8	26.8	82.7	90.9	55.8	38.0	72.1	4.2	24.5	50.8	49.9
	Source Resnet-38	83.8	26.4	73.0	6.5	27.0	80.5	46.6	35.6	22.8	71.3	4.2	10.5	36.1	40.3
	ST	83.1	27.7	74.8	7.1	29.4	84.4	48.5	57.2	23.3	73.3	3.3	22.7	45.8	44.6
	CBST	85.2	33.6	80.4	8.3	31.1	83.9	78.2	53.2	28.9	72.7	4.4	27.0	47.0	48.8
	Source Dilation-Frontend [10]	77.2	20.9	76.0	5.9	4.3	60.3	81.4	10.9	11.0	54.9	32.6	15.3	5.2	35.1
	GCAA [10]	78.6	28.6	80.0	13.1	7.6	68.2	82.1	16.8	9.4	60.4	34.0	26.5	9.9	39.6
Taipei	DeepLab-v2 [36]	78.6	28.6	80.0	13.1	7.6	68.2	82.1	16.8	9.4	60.4	34.0	26.5	9.9	39.6
	MAA [36]	81.7	29.5	85.2	26.4	15.6	76.7	91.7	31.0	12.5	71.5	41.1	47.3	27.7	49.1
	Source Resnet-38	84.9	26.0	80.1	8.3	28.0	73.9	54.4	18.9	26.8	71.6	26.0	48.2	14.7	43.2
	ST	83.1	23.5	78.2	9.6	25.4	74.8	35.9	33.2	27.3	75.2	32.3	52.2	28.8	44.6
	CBST	86.1	35.2	84.2	15.0	22.2	75.6	74.9	22.7	33.1	78.0	37.6	58.0	30.9	50.3

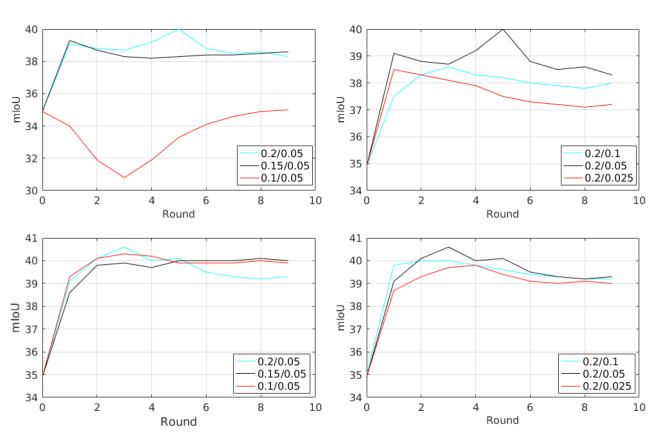
Experiment: SYNTHIA → Cityscapes

Experiment: SYNTHIA \rightarrow Cityscapes

Method	Base Net	Road	SW	Build	Wall*	Fence*	Pole*	TL	TS	Veg.	Sky	\mathbf{PR}	Rider	Car	Bus	Motor	Bike	mIoU	mIoU*
Source only [18]	Dilation-Frontend	6.4	17.7	29.7	1.2	0.0	15.1	0.0	7.2	30.3	66.8	51.1	1.5	47.3	3.9	0.1	0.0	17.4	20.2
FCN wild $[18]$	[43]	11.5	19.6	30.8	4.4	0.0	20.3	0.1	11.7	42.3	68.7	51.2	3.8	54.0	3.2	0.2	0.6	20.2	22.1
Source only [45]	FCN8s-VGG16	5.6	11.2	59.6	8.0	0.5	21.5	8.0	5.3	72.4	75.6	35.1	9.0	23.6	4.5	0.5	18.0	22.0	27.6
Curr. DA $[45]$	[21]	65.2	26.1	74.9	0.1	0.5	10.7	3.5	3.0	76.1	70.6	47.1	8.2	43.2	20.7	0.7	13.1	29.0	34.8
Source only	FCN8s-VGG16	24.1	19.1	68.5	0.9	0.3	16.4	5.7	10.8	75.2	76.3	43.2	15.2	26.7	15.0	5.9	8.5	25.7	30.3
GAN DA	[21]	79.1	31.1	77.1	3.0	0.2	22.8	6.6	15.2	77.4	78.9	47.0	14.8	67.5	16.3	6.9	13.0	34.8	40.8
Source only	DeepLab-v2 [36]	55.6	23.8	74.6	_	_	_	6.1	12.1	74.8	79.0	55.3	19.1	39.6	23.3	13.7	25.0	-	38.6
MAA	[36]	84.3	42.7	77.5	—	—	—	4.7	7.0	77.9	82.5	54.3	21.0	72.3	32.2	18.9	32.3	-	46.7
Source only	FCN8s-VGG16	17.2	19.7	47.3	1.1	0.0	19.1	3.0	9.1	71.8	78.3	37.6	4.7	42.2	9.0	0.1	0.9	22.6	26.2
\mathbf{ST}	[21]	0.2	14.5	53.8	1.6	0.0	18.9	0.9	7.8	72.2	80.3	48.1	6.3	67.7	4.7	0.2	4.5	23.9	27.8
CBST		69.6	28.7	69.5	12.1	0.1	25.4	11.9	13.6	82.0	81.9	49.1	14.5	66.0	6.6	3.7	32.4	35.4	36.1
Source only	ResNet-38	32.6	21.5	46.5	4.8	0.1	26.5	14.8	13.1	70.8	60.3	56.6	3.5	74.1	20.4	8.9	13.1	29.2	33.6
\mathbf{ST}	[41]	38.2	19.6	70.2	3.9	0.0	31.9	17.6	17.2	82.4	68.3	63.1	5.3	78.4	11.2	0.8	7.5	32.2	36.9
CBST		53.6	23.7	75.0	12.5	0.3	36.4	23.5	26.3	84.8	74.7	67.2	17.5	84.5	28.4	15.2	55.8	42.5	48.4

Experiment: GTA5 → Cityscapes

road terrain	sidewalk sky	building person	wall rider	fence car	pole truck	traffic lgt bus	traffic sgn train	vegetation motorcycle	bike
									instant of
						- Care -			
							and the second		
Rav	W	GT	N	loAdapt		ST	CBST	CBST	Г-SP


Experiment: GTA5 → **Cityscapes**

Method	Base Net	Road	SW	Build	Wall	Fence	Pole	TL	TS	Veg.	Terrain	Sky	PR	Rider	Car	Truck	Bus	Train	Motor	Bike	mIoU
Source only [18]	Dilation-Frontend	31.9	18.9	47.7	7.4	3.1	16.0	10.4	1.0	76.5	13.0	58.9	36.0	1.0	67.1	9.5	3.7	0.0	0.0	0.0	21.2
FCN wild $[18]$	[43]	70.4	32.4	62.1	14.9	5.4	10.9	14.2	2.7	79.2	21.3	64.6	44.1	4.2	70.4	8.0	7.3	0.0	3.5	0.0	27.1
Source only [45]	FCN8s-VGG16	18.1	6.8	64.1	7.3	8.7	21.0	14.9	16.8	45.9	2.4	64.4	41.6	17.5	55.3	8.4	5.0	6.9	4.3	13.8	22.3
Curr. DA [45]	[21]	74.9	22.0	71.7	6.0	11.9	8.4	16.3	11.1	75.7	13.3	66.5	38.0	9.3	55.2	18.8	18.9	0.0	16.8	16.6	28.9
Source only $[17]$	FCN8s-VGG16	26.0	14.9	65.1	5.5	12.9	8.9	6.0	2.5	70.0	2.9	47.0	24.5	0.0	40.0	12.1	1.5	0.0	0.0	0.0	17.9
CyCADA $[17]$	[21]	85.2	37.2	76.5	21.8	15.0	23.8	22.9	21.5	80.5	31.3	60.7	50.5	9.0	76.9	17.1	28.2	4.5	9.8	0.0	35.4
Source only [17]	Dilated ResNet-26	42.7	26.3	51.7	5.5	6.8	13.8	23.6	6.9	75.5	11.5	36.8	49.3	0.9	46.7	3.4	5.0	0.0	5.0	1.4	21.7
CyCADA [17]	[44]	79.1	33.1	77.9	23.4	17.3	32.1	33.3	31.8	81.5	26.7	69.0	62.8	14.7	74.5	20.9	25.6	6.9	18.8	20.4	39.5
Source only [30]	ResNet-50	64.5	24.9	73.7	14.8	2.5	18.0	15.9	0	74.9	16.4	72.0	42.3	0.0	39.5	8.6	13.4	0.0	0.0	0.0	25.3
ADR [30]	[16]	87.8	15.6	77.4	20.6	9.7	19.0	19.9	7.7	82.0	31.5	74.3	43.5	9.0	77.8	17.5	27.7	1.8	9.7	0.0	33.3
Source only [24]	DenseNet	67.3	23.1	69.4	13.9	14.4	21.6	19.2	12.4	78.7	24.5	74.8	49.3	3.7	54.1	8.7	5.3	2.6	6.2	1.9	29.0
I2I Adapt $[24]$	[19]	85.8	37.5	80.2	23.3	16.1	23.0	14.5	9.8	79.2	36.5	76.4	53.4	7.4	82.8	19.1	15.7	2.8	13.4	1.7	35.7
Source only [36]	DeepLab-v2	75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6
MAA [36]	[19]	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
Source only	FCN8s-VGG16	64.0	22.1	68.6	13.3	8.7	19.9	15.5	5.9	74.9	13.4	37.0	37.7	10.3	48.2	6.1	1.2	1.8	10.8	2.9	24.3
ST	[18]	83.8	17.4	72.1	14.3	2.9	16.5	16.0	6.8	81.4	24.2	47.2	40.7	7.6	71.7	10.2	7.6	0.5	11.1	0.9	28.1
CBST		66.7	26.8	73.7	14.8	9.5	28.3	25.9	10.1	75.5	15.7	51.6	47.2	6.2	71.9	3.7	2.2	5.4	18.9	32.4	30.9
CBST-SP		90.4	50.8	72.0	18.3	9.5	27.2	28.6	14.1	82.4	25.1	70.8	42.6	14.5	76.9	5.9	12.5	1.2	14.0	28.6	36.1
Source only	ResNet-38	70.0	23.7	67.8	15.4	18.1	40.2	41.9	25.3	78.8	11.7	31.4	62.9	29.8	60.1	21.5	26.8	7.7	28.1	12.0	35.4
ST	[41]	90.1	56.8	77.9	28.5	23.0	41.5	45.2	39.6	84.8	26.4	49.2	59.0	27.4	82.3	39.7	45.6	20.9	34.8	46.2	41.5
CBST		86.8	46.7	76.9	26.3	24.8	42.0	46.0	38.6	80.7	15.7	48.0	57.3	27.9	78.2	24.5	49.6	17.7	25.5	45.1	45.2
CBST-SP		88.0	56.2	77.0	27.4	22.4	40.7	47.3	40.9	82.4	21.6	60.3	50.2	20.4	83.8	35.0	51.0	15.2	20.6	37.0	46.2
CBST-SP+MST		89.6	58.9	78.5	33.0	22.3	41.4	48.2	39.2	83.6	24.3	65.4	49.3	20.2	83.3	39.0	48.6	12.5	20.3	35.3	47.0

Experiment: GTA5 → BDD

Method	Road	SW	Build	Wall	Fence	Pole	TL	TS	Veg.	Terrain	Sky	\mathbf{PR}	Rider	Car	Truck	Bus	Train	Motor	Bike	Mean
Source Resnet-38	76.7	34.1	53.8	10.2	28.3	29.1	34.1	33.9	73.4	17.5	60.8	52.8	15.2	63.8	40.78	28.8	0.0	21.3	2.6	35.0
ST	83.5	26.1	72.5	14.1	27.3	26.5	32.5	28.5	74.5	35.7	88.1	51.4	15.9	67.4	26.6	35.9	0.0	8.9	2.9	37.8
$\operatorname{ST-SP}$	88.2	40.8	74.1	14.8	27.1	25.8	33.1	36.1	72.2	37.4	88.8	53.8	21.2	74.2	24.5	22.9	0.0	12.9	1.5	39.5
CBST	84.1	26.6	75.0	15.3	28.8	28.0	33.8	29.8	76.2	35.6	90.4	54.2	18.2	69.4	28.6	36.7	0.0	13.0	3.8	39.3
CBST-SP	89.9	39.3	73.9	14.9	28.0	28.7	34.1	35.6	76.7	34.9	89.6	57.4	19.8	77.3	27.1	28.1	0.0	13.8	1.7	40.6

p_0 : Initial p value

 Δp : Per round increment size

Legend: $p_0/\Delta p$

Thank You!

