

Simultaneous Edge Alignment and Learning

Introduction

Several existing edge/boundary detection problems:

Original Image

Semantic Edges

Category-Aware SEs

Research Motivation

Noisy label learning: Automatic alignment of edge labels

Learning to directly predict sharp/crisp boundaries

Zhiding Yu, Weiyang Liu, Yang Zou, Chen Feng, Srikumar Ramalingam, B. V. K. Vijaya Kumar, Jan Kautz {zhidingy, jkautz}@nvidia.com, wyliu@gatech.edu, yzou2@andrew.cmu.edu, cfeng@nyu.edu, srikumar@cs.utah.edu

Previous Related Work

] Xie et al., "Holistically-nested edge detection," *ICCV15*. [2] Yu et al., "CASENet: Deep category-aware semantic edge detection," CVPR17.

c) GraphCut refinement (d) DenseCRF refinement [3] Yang et al., "Object contour detection with a fully convolutional encoder-decoder network," CVPR16.

The Vanilla SEAL Framework

Biased Gaussian Kernel and Markov Prior

 $(\mathbf{p},\mathbf{q})\in E_m$

Instance Mask Learning

[5] Pinheiro et al., "Learning to segment

[6] Castrejon et al., "Annotating object

instances with a Polygon-RNN", CVPR17.

object candidates," NIPS15.

[4] Martin et al., "Learning to detect natural image boundaries using local brightness, color, and texture cues" *IEEE TPAMI 04*.

Optimization for Assignment with Pairwise Cost Given the new edge prior model, the aligned edge label update steps can be reformulated as solving the following assignment problem with the cost consisting a unary term and a pairwise term:

$$\mathbf{h}_{\mathbf{q}}^{\top} \boldsymbol{\Sigma}_{\mathbf{q}} \mathbf{m}_{\mathbf{q}} + \log((1 - \sigma(\mathbf{p})) / \sigma(\mathbf{p})) \Big] + \lambda \sum_{\substack{(\mathbf{p}, \mathbf{q}) \in E_m \\ \mathbf{v} \in \mathcal{N}(\mathbf{q})}} \sum_{\substack{(\mathbf{u}, \mathbf{v}) \in E_m, \\ \mathbf{v} \in \mathcal{N}(\mathbf{q})}} \|\mathbf{m}_{\mathbf{q}} - \mathbf{m}_{\mathbf{v}}\|^2$$
pairwise dependented decouple the pair-

$$= \sum_{(\mathbf{p},\mathbf{q})\in E_m} \sum_{\substack{(\mathbf{u},\mathbf{v})\in E_{m'},\\\mathbf{v}\in\mathcal{N}(\mathbf{q})}} \left\|\mathbf{m}_{\mathbf{q}}-\mathbf{m}_{\mathbf{v}}\right\|^2$$

We then propose an iterative-conditional mode

CASENet: Network from [1] trained with instance-sensitive edge labels. **CASENet-S:** CASENet with loss replaced to regular sigmoid cross-entropy loss. **CASENet-C:** CASENet-S trained on labels preprocessed by dense-CRF following [3]. **SEAL:** The proposed learning framework trained with a CASENet backbone. **MF:** Maximum F-measure (ODS). **Thin:** Evaluation with thinned GT and prediction. **Raw:** Evaluation with unthinned GT (same width as train label) and original prediction.

																	/	-				
Metric	Method	aero	bike	bird	boat	bottle	bus	car	cat	chair	COW	table	\log	horse	mbike	person	plant	sheep	sofa	train	$\mathbf{t}\mathbf{v}$	mean
	CASENet	83.6	75.3	82.3	63.1	70.5	83.5	76.5	82.6	56.8	76.3	47.5	80.8	80.9	75.6	80.7	54.1	77.7	52.3	77.9	68.0	72.3
MF	CASENet-S	84.5	76.5	83.7	65.3	71.3	83.9	78.3	84.5	58.8	76.8	50.8	81.9	82.3	77.2	82.7	55.9	78.1	54.0	79.5	69.4	73.8
(Thin)	CASENet-C	83.9	71.1	82.5	62.6	71.0	82.2	76.8	83.4	56.5	76.9	49.2	81.0	81.1	75.4	81.4	54.0	78.5	53.3	77.1	67.0	72.2
	SEAL	84.5	76.5	83.7	64.9	71.7	83.8	78.1	85.0	58.8	76.6	50.9	82.4	82.2	77.1	83.0	55.1	78.4	54.4	79.3	69.6	73.8
	CASENet	71.8	60.2	72.6	49.5	59.3	73.3	65.2	70.8	51.9	64.9	41.2	67.9	72.5	64.1	71.2	44.0	71.7	45.7	65.4	55.8	62.0
MF	CASENet-S	75.8	65.0	78.4	56.2	64.7	76.4	71.8	75.2	55.2	68.7	45.8	72.8	77.0	68.1	76.5	47.1	75.5	49.0	70.2	60.6	66.5
(Raw)	CASENet-C	80.4	67.1	79.9	57.9	65.9	77.6	72.6	79.2	53.5	72.7	45.5	76.7	79.4	71.2	78.3	50.8	77.6	50.7	71.6	61.6	68.5
	SEAL	81.1	69.6	81.7	60.6	68.0	80.5	75.1	80.7	57.0	73.1	48.1	78.2	80.3	72.1	79.8	50.0	78.2	51.8	74.6	65.0	70.3
			1	1							1						1					

Metric	Method	aero	bike	bird	boat	bottle	bus	car	cat	chair	COW	table	\log	horse	mbike	person	plant	sheep	sofa	train	$\mathbf{t}\mathbf{v}$	mean
	CASENet	74.5	59.7	73.4	48.0	67.1	78.6	67.3	76.2	47.5	69.7	36.2	75.7	72.7	61.3	74.8	42.6	71.8	48.9	71.7	54.9	63.6
\mathbf{MF}	CASENet-S	75.9	62.4	75.5	52.0	66.7	79.7	71.0	79.0	50.1	70.0	39.8	77.2	74.5	65.0	77.0	47.3	72.7	51.5	72.9	57.3	65.9
(Thin)	CASENet-C	78.4	60.9	74.9	49.7	64.4	75.8	67.2	77.1	48.2	71.2	40.9	76.1	72.9	64.5	75.9	51.4	71.3	51.6	68.6	55.4	64.8
	SEAL	78.0	65.8	76.6	52.4	68.6	80.0	70.4	79.4	50.0	72.8	41.4	78.1	75.0	65.5	78.5	49.4	73.3	52.2	73.9	58.1	67.0
	CASENet	65.8	51.5	65.0	43.1	57.5	68.1	58.2	66.0	45.4	59.8	32.9	64.2	65.8	52.6	65.7	40.9	65.0	42.9	61.4	47.8	56.0
\mathbf{MF}	CASENet-S	68.9	55.8	70.9	47.4	62.0	71.5	64.7	71.2	48.0	64.8	37.3	69.1	68.9	58.2	70.2	44.3	68.7	46.1	65.8	52.5	60.3
(Raw)	CASENet-C	75.4	57.7	73.0	48.7	62.1	72.2	64.4	74.3	46.8	68.8	38.8	73.4	71.4	62.2	72.1	50.3	69.8	48.4	66.1	53.0	62.4
	SEAL	75.3	60.5	75.1	51.2	65.4	76.1	67.9	75.9	49.7	69.5	39.9	74.8	72.7	62.1	74.2	48.4	72.3	49.3	70.6	56.7	64.4

	MF s	core	es on	the C	Citys	scap	bes	valio	datio	on s	et. R	lesu	ults a	are	mea	asui	red	by g	%.		
Metric	Method	road	sidewalk	building	wall	fence	pole	t-light	t-sign	veg	terrain	sky	person	rider	car	truck	bus	train	motor	bike	mean
MF (Thin)	CASENet CASENet-S SEAL	86.2 87.6 87.6	74.9 77.1 77.5	74.5 75.9 75.9	47.6 48.7 47.6	46.5 46.2 46.3	72.8 75.5 75.5	70.0 71.4 71.2	73.3 75.3 75.4	79.3 80.6 80.9	57.0 59.7 60.1	86.5 86.8 87.4	80.4 81.4 81.5	66.8 68.1 68.9	88.3 89.2 88.9	49.3 50.7 50.2	64.6 68.0 67.8	47.8 42.5 44.1	55.8 54.6 52.7	71.9 72.7 73.0	68.1 69.1 69.1
MF (Raw)	CASENet CASENet-S SEAL	66.8 79.2 84.4	64.6 70.8 73.5	66.8 70.4 72.7	39.4 42.5 43.4	40.6 42.4 43.2	71.7 73.9 76.1	64.2 66.7 68.5	65.1 68.2 69.8	71.1 74.6 77.2	50.2 54.6 57.5	80.3 82.5 85.3	73.1 75.7 77.6	58.6 61.5 63.6	77.0 82.7 84.9	42.0 46.0 48.6	53.2 59.7 61.9	39.1 39.1 4 1.2	46.1 47.0 49.0	62.2 64.8 66.7	59.6 63.3 65.5
road si terrain	idewalk building sky person	g wall rider	fence provide the fence of the	pole traffic ruck bu	elgt t s	raffic sgr train	n vega mota	etation orcycle	bike												
																F				Black C	
					hosti							And the second					- Crue	2			
Qualitativ	ve compariso	on of G	GT, CASEN	Net, CASE	ENet-S	S, and	SEAL,	, and th	ne 📕		A terms									10.44	Ŧ

visualization of edge alignment on Cityscapes.

Baselines & Benchmarks

Experimental Results (SBD)

MF scores on the SBD test set. Results are measured by %.

MF scores on the re-annotated SBD test set. Results are measured by %.

Comparison of GT, CASENet, CASENet-S, CASENet-C and SEAL

GT refinement comparison.

Experimental Results (Cityscapes)

sidewalk	building	wall	fence	pole	t-light	t-sign	veg	terrain	sky	person	rider	car	truck	bus	train	motor	bike	mean
74.9	74.5	47.6	46.5	72.8	70.0	73.3	79.3	57.0	86.5	80.4	66.8	88.3	49.3	64.6	47.8	55.8	71.9	68.1
77.1	75.9	48.7	46.2	75.5	71.4	75.3	80.6	59.7	86.8	81.4	68.1	89.2	50.7	68.0	42.5	54.6	72.7	69.1
77.5	75.9	47.6	46.3	75.5	71.2	75.4	80.9	60. 1	87.4	81.5	68.9	88.9	50.2	67.8	44.1	52.7	73.0	69.1
64.6	66.8	39.4	40.6	71.7	64.2	65.1	71.1	50.2	80.3	73.1	58.6	77.0	42.0	53.2	39.1	46.1	62.2	59.6
70.8	70.4	42.5	42.4	73.9	66.7	68.2	74.6	54.6	82.5	75.7	61.5	82.7	46.0	59.7	39.1	47.0	64.8	63.3
73.5	72.7	43.4	43.2	76.1	68.5	69.8	77.2	57.5	85.3	77.6	63.6	84.9	48.6	61.9	41.2	49.0	66.7	65.5
0		1	, cc							1		•			•			