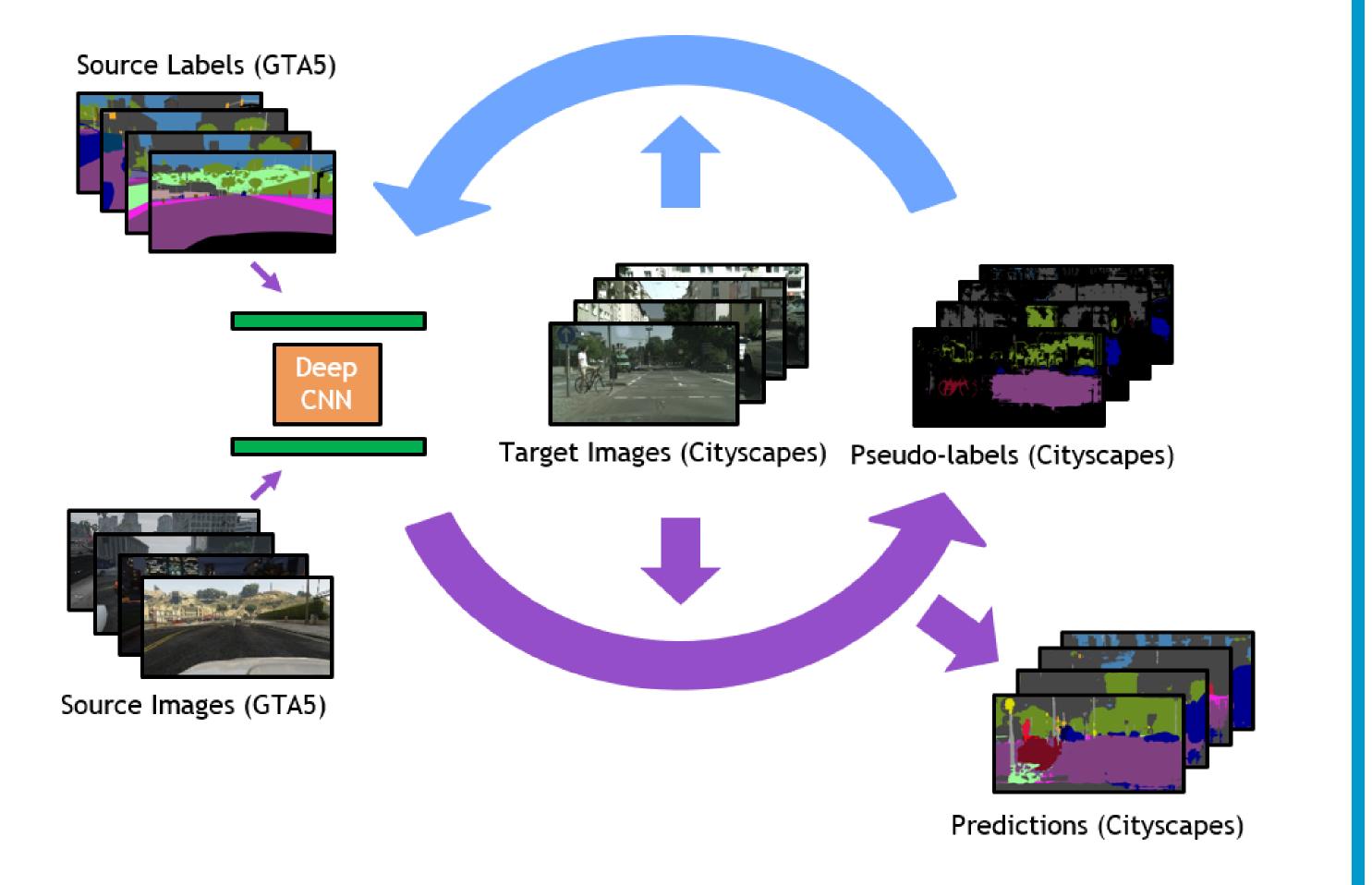
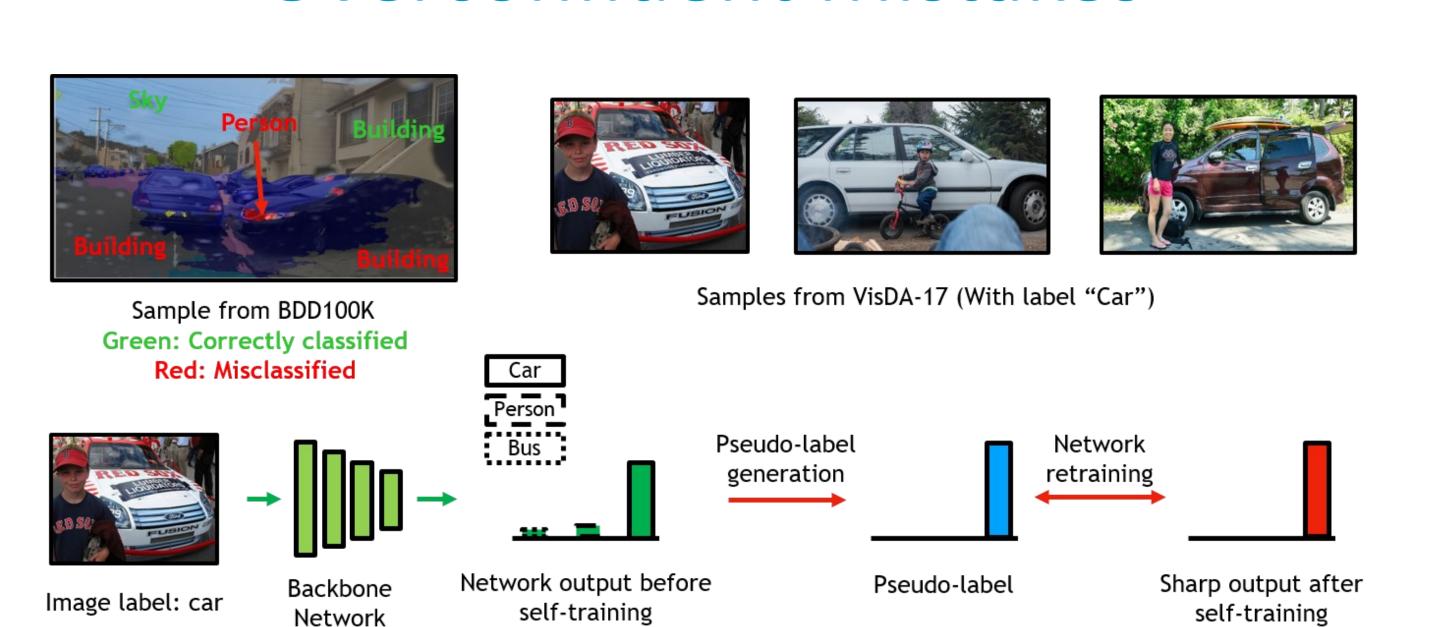

Confidence Regularized Self-Training

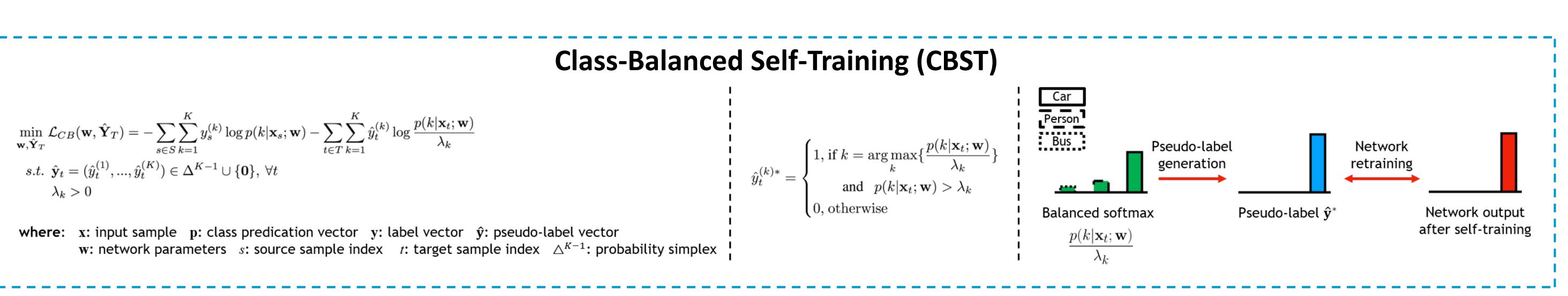
GM CALA®

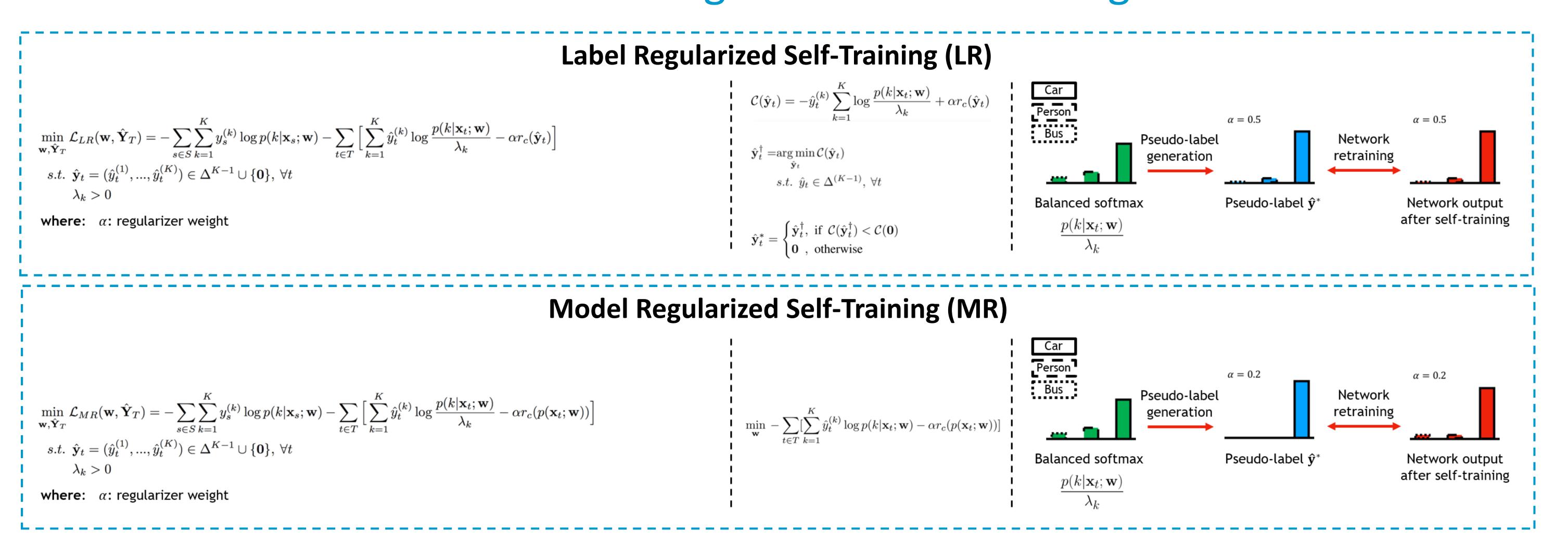
Yang Zou*, Zhiding Yu*, Xiaofeng Liu, B. V. K. Vijaya Kumar, Jinsong Wang yzou2@andrew.cmu.edu, zhidingy@nvidia.com, liuxiaofeng@cmu.edu

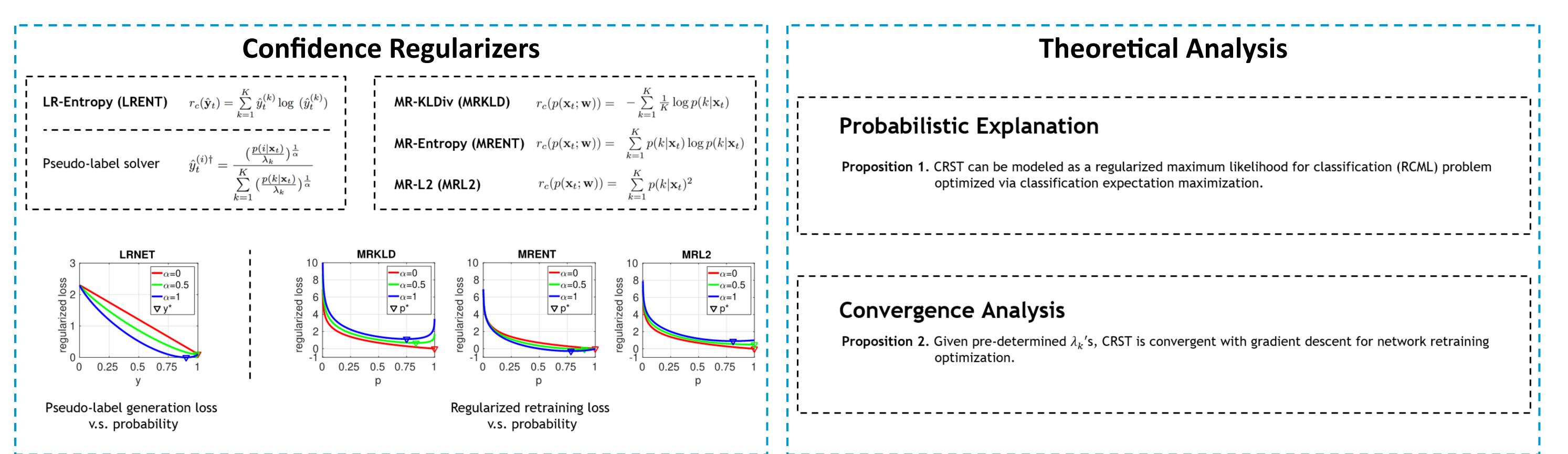

Unsupervised Domain Adaptation Image classification Adaptation



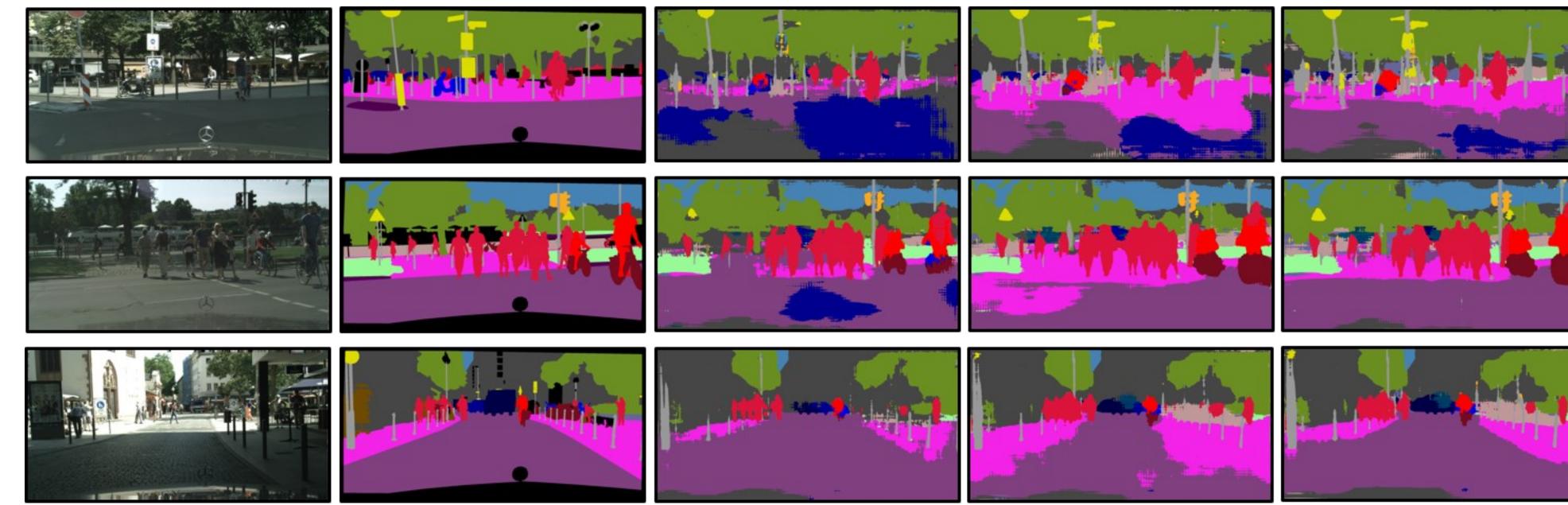
Proposed Iterative Framework


Source Domain (Labeled


Overconfident Mistakes


Preliminaries and Definitions

Confidence Regularized Self-Training



Regularizer Design and Theory

Experiment: GTA5 —> Cityscapes

Source	DRN-26	42.7	26.3	51.7	5.5	6.8	13.8	23.6	6.9	75.5	11.5	36.8	49.3	0.9	46.7	3.4	5.0	0.0	5.0	1.4	21.7
CyCADA [23]	DK14-20	79.1	33.1	77.9	23.4	17.3	32.1	33.3	31.8	81.5	26.7	69.0	62.8	14.7	74.5	20.9	25.6	6.9	18.8	20.4	39.5
Source	DRN-105	36.4	14.2	67.4	16.4	12.0	20.1	8.7	0.7	69.8	13.3	56.9	37.0	0.4	53.6	10.6	3.2	0.2	0.9	0.0	22.2
MCD [51]	DKIV-103	90.3	31.0	78.5	19.7	17.3	28.6	30.9	16.1	83.7	30.0	69.1	58.5	19.6	81.5	23.8	30.0	5.7	25.7	14.3	39.7
Source	DeepLabv2	75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6
AdaptSegNet [60]	DeepLaov2	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
AdvEnt [63]	DeepLabv2	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
Source	DeepLabv2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29.2
FCAN [67]	DeepLaov2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	46.6
Source		71.3	19.2	69.1	18.4	10.0	35.7	27.3	6.8	79.6	24.8	72.1	57.6	19.5	55.5	15.5	15.1	11.7	21.1	12.0	33.8
CBST	DeepLabv2	91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9
MRL2		91.9	55.2	80.9	32.1	21.5	36.7	30.0	19.0	84.8	34.9	80.1	56.1	23.8	83.9	28.0	29.4	20.5	24.0	40.3	46.0
MRENT		91.8	53.4	80.6	32.6	20.8	34.3	29.7	21.0	84.0	34.1	80.6	53.9	24.6	82.8	30.8	34.9	16.6	26.4	42.6	46.1
MRKLD		91.0	55.4	80.0	33.7	21.4	37.3	32.9	24.5	85.0	34.1	80.8	57.7	24.6	84.1	27.8	30.1	26.9	26.0	42.3	47.1
LRENT		91.8	53.5	80.5	32.7	21.0	34.0	29.0	20.3	83.9	34.2	80.9	53.1	23.9	82.7	30.2	35.6	16.3	25.9	42.8	45.9
Source		70.0	23.7	67.8	15.4	18.1	40.2	41.9	25.3	78.8	11.7	31.4	62.9	29.8	60.1	21.5	26.8	7.7	28.1	12.0	35.4
CBST [69]		86.8	46.7	76.9	26.3	24.8	42.0	46.0	38.6	80.7	15.7	48.0	57.3	27.9	78.2	24.5	49.6	17.7	25.5	45.1	45.2
MRL2	DecNet 20	84.4	52.7	74.7	38.0	32.2	43.7	53.7	38.6	73.9	24.4	64.4	45.6	24.6	63.2	3.22	31.9	45.9	44.2	34.8	46.0
MRENT	ResNet-38	84.6	49.5	73.9	35.8	25.1	46.2	53.3	43.3	75.2	24.2	63.8	48.2	33.8	65.7	2.89	32.6	39.2	50.0	34.7	46.4
MRKLD		84.5	47.7	74.1	27.9	22.1	43.8	46.5	37.8	83.7	22.7	56.1	56.8	26.8	81.7	22.5	46.2	27.5	32.3	47.9	46.8
LRENT		80.3	40.8	65.8	24.6	30.5	43.1	49.5	40.3	82.1	26.0	54.6	59.4	32.1	68.0	31.9	30.0	21.9	44.8	46.7	45.9
CBST-SP		85.6	55.1	76.9	26.8	23.4	38.9	47.1	46.9	83.4	25.5	68.7	45.6	15.7	79.7	27.7	50.3	38.2	33.4	44.6	48.1
MRKLD-SP	ResNet-38	90.8	46.0	79.9	27.4	23.3	42.3	46.2	40.9	83.5	19.2	59.1	63.5	30.8	83.5	36.8	52.0	28.0	36.8	46.4	49.2
MRKLD-SP-MST		91.7	45.1	80.9	29.0	23.4	43.8	47.1	40.9	84.0	20.0	60.6	64.0	31.9	85.8	39.5	48.7	25.0	38.0	47.0	49.8
			Y			00	E	T	- 24		-5.5		Y	1		9*		Y			E-8

mage Ground Truth Source Model CB31 CR31 (MI

Experiment: SYNTHIA —> Cityscapes

Method	Backbone	Road	SW	Build	Wall*	Fence*	Pole*	TL	TS	Veg.	Sky	PR	Rider	Car	Bus	Motor	Bike	mIoU	mIoU*
Source	DRN-105	14.9	11.4	58.7	1.9	0.0	24.1	1.2	6.0	68.8	76.0	54.3	7.1	34.2	15.0	0.8	0.0	23.4	26.8
MCD [51]	DKN-103	84.8	43.6	79.0	3.9	0.2	29.1	7.2	5.5	83.8	83.1	51.0	11.7	79.9	27.2	6.2	0.0	37.3	43.5
Source	DeepLabv2	55.6	23.8	74.6	_	_	_	6.1	12.1	74.8	79.0	55.3	19.1	39.6	23.3	13.7	25.0	_	38.6
AdaptSegNet [60]		84.3	42.7	77.5	_	_	_	4.7	7.0	77.9	82.5	54.3	21.0	72.3	32.2	18.9	32.3	_	46.7
AdvEnt [63]	DeepLabv2	85.6	42.2	79.7	8.7	0.4	25.9	5.4	8.1	80.4	84.1	57.9	23.8	73.3	36.4	14.2	33.0	41.2	48.0
Source	ResNet-38	32.6	21.5	46.5	4.8	0.1	26.5	14.8	13.1	70.8	60.3	56.6	3.5	74.1	20.4	8.9	13.1	29.2	33.6
CBST [69]		53.6	23.7	75.0	12.5	0.3	36.4	23.5	26.3	84.8	74.7	67.2	17.5	84.5	28.4	15.2	55.8	42.5	48.4
Source		64.3	21.3	73.1	2.4	1.1	31.4	7.0	27.7	63.1	67.6	42.2	19.9	73.1	15.3	10.5	38.9	34.9	40.3
CBST		68.0	29.9	76.3	10.8	1.4	33.9	22.8	29.5	77.6	78.3	60.6	28.3	81.6	23.5	18.8	39.8	42.6	48.9
MRL2	Doopl oby2	63.4	27.1	76.4	14.2	1.4	35.2	23.6	29.4	78.5	77.8	61.4	29.5	82.2	22.8	18.9	42.3	42.8	48.7
MRENT	DeepLabv2	69.6	32.6	75.8	12.2	1.8	35.3	23.3	29.5	77.7	78.9	60.0	28.5	81.5	25.9	19.6	41.8	43.4	49.6
MRKLD		67.7	32.2	73.9	10.7	1.6	37.4	22.2	31.2	80.8	80.5	60.8	29.1	82.8	25.0	19.4	45.3	43.8	50.1
LRENT		65.6	30.3	74.6	13.8	1.5	35.8	23.1	29.1	77.0	77.5	60.1	28.5	82.2	22.6	20.1	41.9	42.7	48.7

Exp: VisDA-17

Method	Aero	Bike	Bus	Car	Horse	Knife	Motor	Person	Plant	Skateboard	Train	Truck	Mean
Source [50]	55.1	53.3	61.9	59.1	80.6	17.9	79.7	31.2	81.0	26.5	73.5	8.5	52.4
MMD [33]	87.1	63.0	76.5	42.0	90.3	42.9	85.9	53.1	49.7	36.3	85.8	20.7	61.1
DANN [15]	81.9	77.7	82.8	44.3	81.2	29.5	65.1	28.6	51.9	54.6	82.8	7.8	57.4
ENT [18]	80.3	75.5	75.8	48.3	77.9	27.3	69.7	40.2	46.5	46.6	79.3	16.0	57.0
MCD [51]	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9
ADR [50]	87.8	79.5	83.7	65.3	92.3	61.8	88.9	73.2	87.8	60.0	85.5	32.3	74.8
SimNet-Res152 [44]	94.3	82.3	73.5	47.2	87.9	49.2	75.1	79.7	85.3	68.5	81.1	50.3	72.9
GTA-Res152 [53]	-	-	-	-	-	-	-	-	-	-	-	-	77.1
Source-Res101	68.7	36.7	61.3	70.4	67.9	5.9	82.6	25.5	75.6	29.4	83.8	10.9	51.6
CBST	87.2±2.4	78.8 ± 1.0	56.5 ± 2.2	55.4 ± 3.6	85.1 ± 1.4	79.2 ± 10.3	83.8 ± 0.4	77.7 ± 4.0	82.8 ± 2.8	88.8 ± 3.2	69.0 ± 2.9	72.0 ± 3.8	76.4±0.9
MRL2	87.0±2.9	79.5 ± 1.9	57.1 ± 3.2	54.7 ± 2.9	85.5 ± 1.1	78.1 ± 11.7	83.0 ± 1.5	77.7 ± 3.7	82.4 ± 1.7	88.6 ± 2.7	69.1 ± 2.2	71.8 ± 3.0	76.2±1.0
MRENT	87.1±2.7	78.3 ± 0.7	56.1 ± 4.0	54.4 ± 2.7	84.4 ± 2.3	79.9 ± 10.6	83.7 ± 1.1	77.9 ± 4.4	82.7 ± 2.4	87.4 ± 2.8	70.0 ± 1.4	72.8 ± 3.3	76.2±0.8
MRKLD	87.3±2.5	79.4 ± 1.9	60.5 ± 2.4	59.7 ± 2.5	87.6 ± 1.4	82.4 ± 4.4	86.5 ± 1.1	78.4 ± 2.6	84.6 ± 1.7	86.4 ± 2.8	72.5 ± 2.4	69.8 ± 2.5	77.9±0.5
LRENT	87.7±2.4	78.7 ± 0.8	57.3 ± 3.3	54.5 ± 4.0	84.8 ± 1.7	79.7 ± 10.3	84.2 ± 1.4	77.4 ± 3.7	83.1 ± 1.5	88.3 ± 2.6	70.9 ± 2.1	72.6 ± 2.4	76.6±0.9
MRKLD+LRENT	88.0±0.6	79.2 ± 2.2	61.0 ± 3.1	60.0 ± 1.0	87.5±1.2	81.4±5.6	86.3±1.5	78.8 ± 2.1	85.6±0.9	86.6±2.5	73.9 ± 1.3	68.8 ± 2.3	78.1±0.2

Exp: Office-31

Method $A \rightarrow W$ $D \rightarrow W$ $W \rightarrow D$ $A \rightarrow D$ $D \rightarrow A$ $W \rightarrow A$ MeanResNet-50 [21] 68.4 ± 0.2 96.7 ± 0.1 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1DAN [33] 80.5 ± 0.4 97.1 ± 0.2 99.6 ± 0.1 78.6 ± 0.2 63.6 ± 0.3 62.8 ± 0.2 80.4RTN [35] 84.5 ± 0.2 96.8 ± 0.1 99.4 ± 0.1 77.5 ± 0.3 66.2 ± 0.2 64.8 ± 0.3 81.6DANN [15] 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2ADDA [61] 86.2 ± 0.5 96.2 ± 0.3 98.4 ± 0.3 77.8 ± 0.3 69.5 ± 0.4 68.9 ± 0.5 82.9JAN [36] 85.4 ± 0.3 97.4 ± 0.2 99.8 ± 0.2 84.7 ± 0.3 68.6 ± 0.3 70.0 ± 0.4 84.3GTA [53] 89.5 ± 0.5 97.9 ± 0.3 99.8 ± 0.4 87.7 ± 0.5 72.8 ± 0.3 71.4 ± 0.4 86.5CBST 87.8 ± 0.8 98.5 ± 0.1 100 ± 0.0 86.5 ± 1.0 71.2 ± 0.4 70.9 ± 0.7 85.8MRL2 88.4 ± 0.2 98.6 ± 0.1 100 ± 0.0 87.7 ± 0.9 71.8 ± 0.2 72.1 ± 0.2 86.4MRKLD 88.4 ± 0.9 98.7 ± 0.1 100 ± 0.0 88.0 ± 0.9 71.7 ± 0.8 70.9 ± 0.4 86.3LRENT 88.6 ± 0.4 98.7 ± 0.1 100 ± 0.0 89.0 ± 0.8 72.0 ± 0.6 71.0 ± 0.3 86.6

Reference

- Zou et al., Unsupervised domain adaptation for semantic segmentation via class-balanced self-training, ECCV 2018. (CBST)
 Tsai et al., Learning to adapt structured output space for semantic segmenta-
 - Saito et al., Maximum classifier discrepancy for unsupervised domain adaptation, CVPR 2018. (MCD)
 - Sankaranarayanan et al., Generate to adapt: aligning domains using genera tive adversarial networks, CVPR 2018. (GTA)
 - Grandvalet et al., Semi-supervised learning by entropy minimization, NeuriPS
 - versarial discriminative domain adaptation. CVPR 2017 (ADDA)