
Confidence Regularized Self-Training

Yang Zou

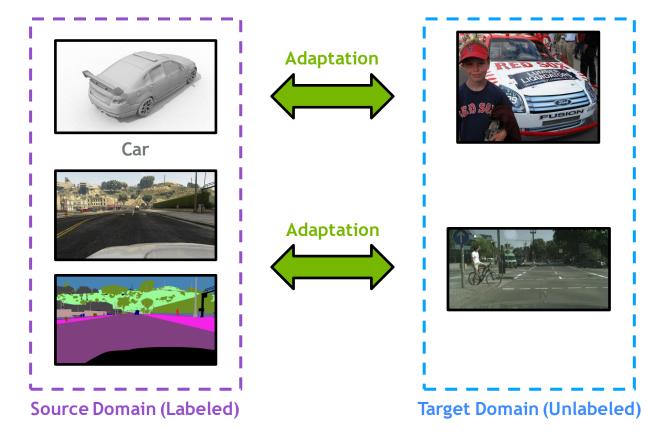
Zhiding Yu

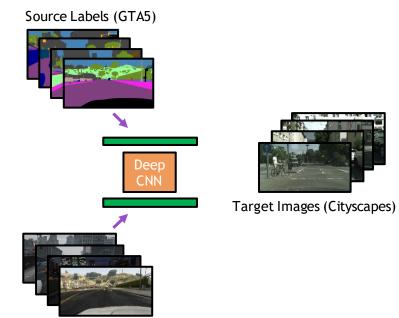
<u>Xiaofeng Liu</u>

Vijayakumar Bhagavatula

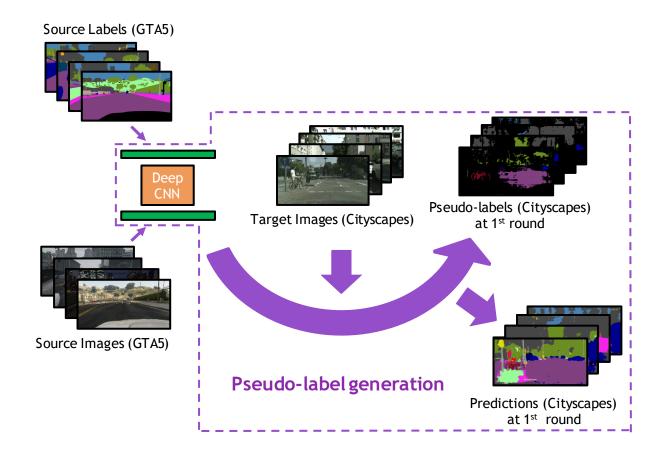

Jinsong Wang

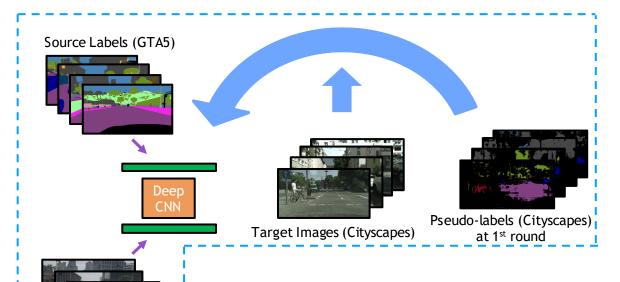
777777


Carnegie Mellon University

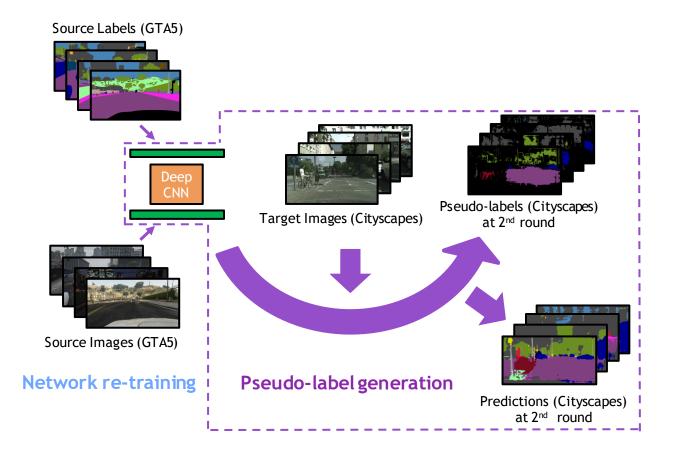


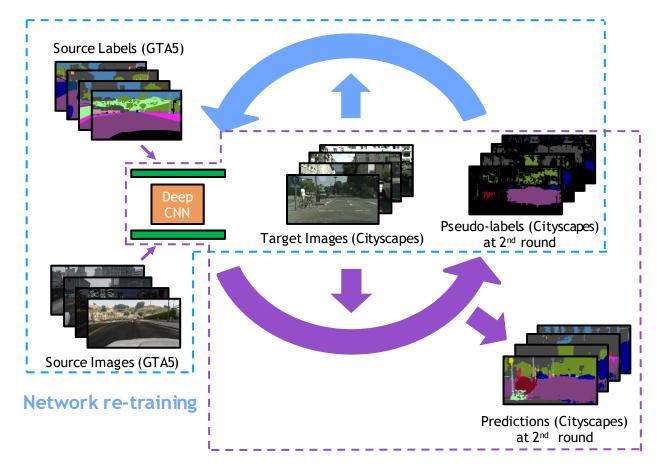
Unsupervised Domain Adaptation (UDA)

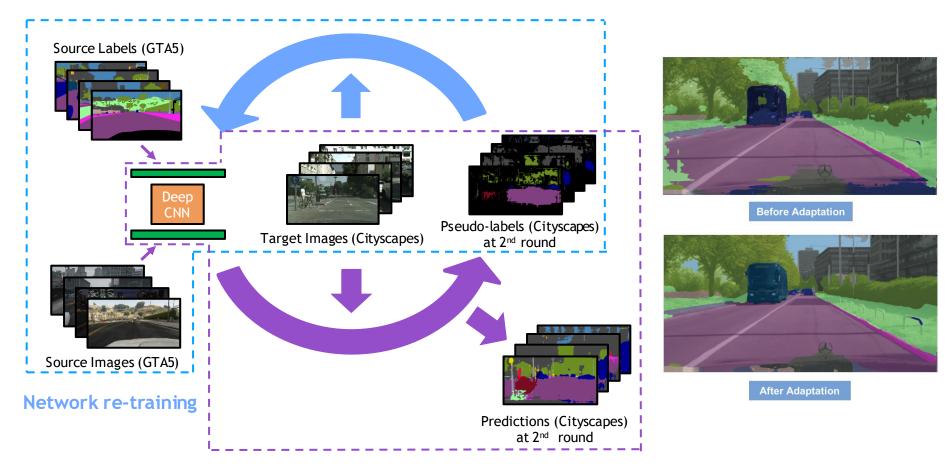

Image classification



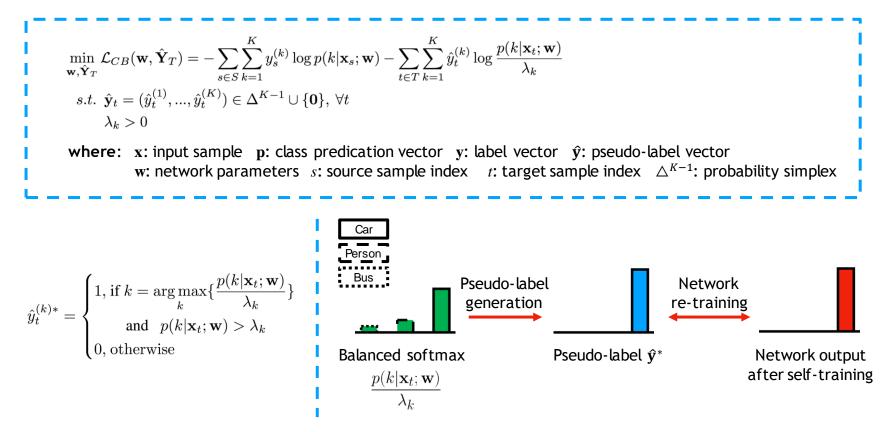
Semantic segmentation

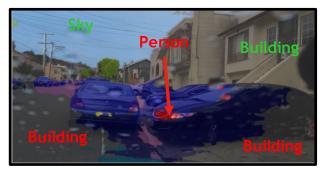

Source Images (GTA5)





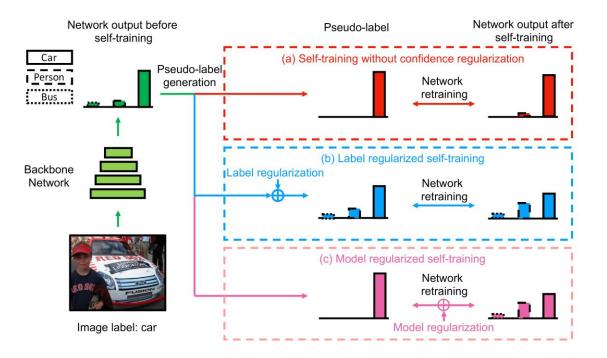
Network re-training


Source Images (GTA5)

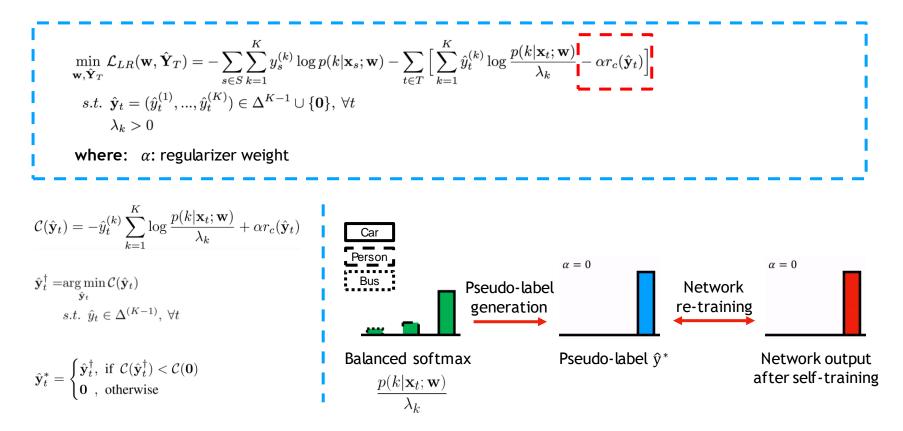


Class-Balanced Self-Training (CBST)

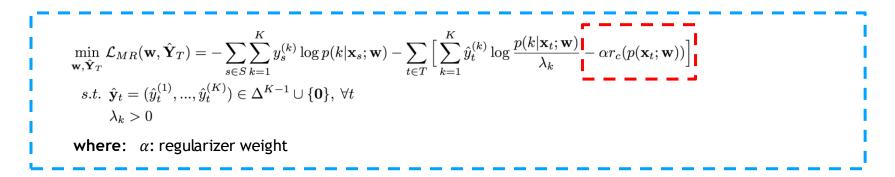
Yang and Yu et al., Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training, ECCV18


Confidence Regularized Self-Training (CRST)

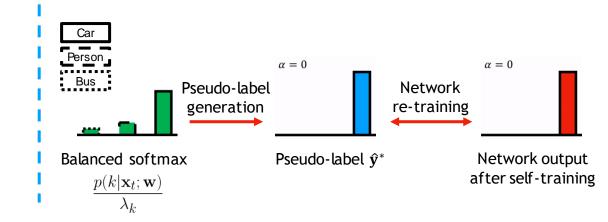
Sample from BDD100K Green: Correct Red: Misclassified

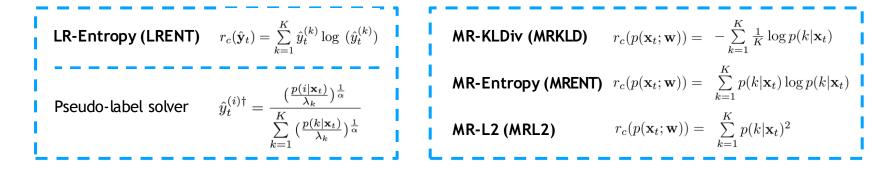


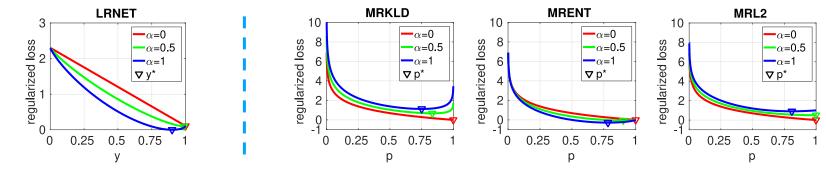
Samples from VisDA-17 (With label "Car")



Yang and Yu et al., **Confidence-Regularized Self-Training**, ICCV19


Label Regularized Self-Training (LR)


Model Regularized Self-Training (MR)

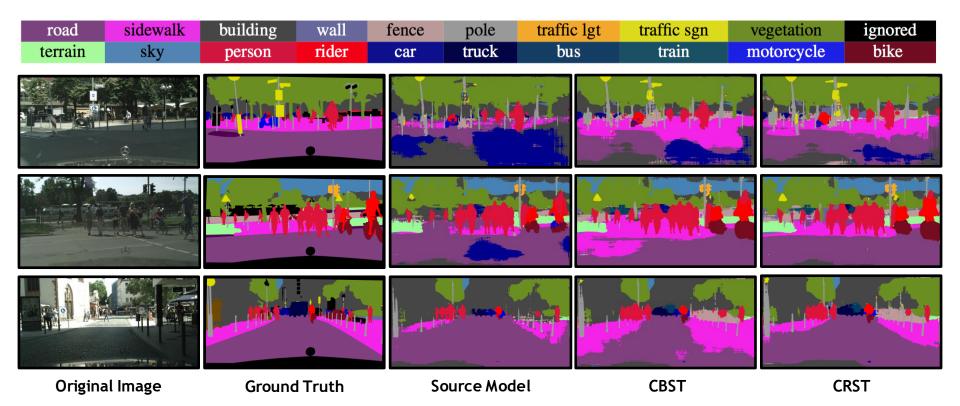


$$\min_{\mathbf{w}} - \sum_{t \in T} \left[\sum_{k=1}^{K} \hat{y}_{t}^{(k)} \log p(k|\mathbf{x}_{t}; \mathbf{w}) - \alpha r_{c}(p(\mathbf{x}_{t}; \mathbf{w}))\right]$$

Proposed Confidence Regularizers

Pseudo-label generation loss vs. probability Regularized retraining loss vs. probability

Experiment: Quantitative Results


Results on SYNTHIA-> Cityscapes (mIoU* - 13 class)

Method	Backbone	Road	SW	Build	Wall*	Fence*	Pole*	TL	TS	Veg.	Sky	PR	Rider	Car	Bus	Motor	Bike	mIoU	mIoU*
Source	DRN-105	14.9	11.4	58.7	1.9	0.0	24.1	1.2	6.0	68.8	76.0	54.3	7.1	34.2	15.0	0.8	0.0	23.4	26.8
MCD [51]		84.8	43.6	79.0	3.9	0.2	29.1	7.2	5.5	83.8	83.1	51.0	11.7	79.9	27.2	6.2	0.0	37.3	43.5
Source	DeepLabv2	55.6	23.8	74.6	_	_	_	6.1	12.1	74.8	79.0	55.3	19.1	39.6	23.3	13.7	25.0	-	38.6
AdaptSegNet [60]		84.3	42.7	77.5	_	_	_	4.7	7.0	77.9	82.5	54.3	21.0	72.3	32.2	18.9	32.3	—	46.7
AdvEnt [63]	DeepLabv2	85.6	42.2	79.7	8.7	0.4	25.9	5.4	8.1	80.4	84.1	57.9	23.8	73.3	36.4	14.2	33.0	41.2	48.0
Source	ResNet-38	32.6	21.5	46.5	4.8	0.1	26.5	14.8	13.1	70.8	60.3	56.6	3.5	74.1	20.4	8.9	13.1	29.2	33.6
CBST [69]		53.6	23.7	75.0	12.5	0.3	36.4	23.5	26.3	84.8	74.7	67.2	17.5	84.5	28.4	15.2	55.8	42.5	48.4
Source		64.3	21.3	73.1	2.4	1.1	31.4	7.0	27.7	63.1	67.6	42.2	19.9	73.1	15.3	10.5	38.9	34.9	40.3
CBST	DeepLabv2	68.0	29.9	76.3	10.8	1.4	33.9	22.8	29.5	77.6	78.3	60.6	28.3	81.6	23.5	18.8	39.8	42.6	48.9
CRST		67.7	32.2	73.9	10.7	1.6	37.4	22.2	31.2	80.8	80.5	60.8	29.1	82.8	25.0	19.4	45.3	43.8	50.1

Results on GTA5 -> Cityscapes

Method	Backbone	Road	SW	Build	Wall	Fence	Pole	TL	TS	Veg.	Terrain	Sky	PR	Rider	Car	Truck	Bus	Train	Motor	Bike	mIoU
Source	DRN-26	42.7	26.3	51.7	5.5	6.8	13.8	23.6	6.9	75.5	11.5	36.8	49.3	0.9	46.7	3.4	5.0	0.0	5.0	1.4	21.7
CyCADA [23]		79.1	33.1	77.9	23.4	17.3	32.1	33.3	31.8	81.5	26.7	69.0	62.8	14.7	74.5	20.9	25.6	6.9	18.8	20.4	39.5
Source	DRN-105	36.4	14.2	67.4	16.4	12.0	20.1	8.7	0.7	69.8	13.3	56.9	37.0	0.4	53.6	10.6	3.2	0.2	0.9	0.0	22.2
MCD [51]		90.3	31.0	78.5	19.7	17.3	28.6	30.9	16.1	83.7	30.0	69.1	58.5	19.6	81.5	23.8	30.0	5.7	25.7	14.3	39.7
Source	DeepLabv2	75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6
AdaptSegNet [60]		86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
AdvEnt [63]	DeepLabv2	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
Source	DeepLabv2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29.2
FCAN [67]		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	46.6
Source	DeepLabv2	71.3	19.2	69.1	18.4	10.0	35.7	27.3	6.8	79.6	24.8	72.1	57.6	19.5	55.5	15.5	15.1	11.7	21.1	12.0	33.8
CBST		91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9
CRST		91.0	55.4	80.0	33.7	21.4	37.3	32.9	24.5	85.0	34.1	80.8	57.7	24.6	84.1	27.8	30.1	26.9	26.0	42.3	47.1
Source		70.0	23.7	67.8	15.4	18.1	40.2	41.9	25.3	78.8	11.7	31.4	62.9	29.8	60.1	21.5	26.8	7.7	28.1	12.0	35.4
CBST [69]	ResNet-38	86.8	46.7	76.9	26.3	24.8	42.0	46.0	38.6	80.7	15.7	48.0	57.3	27.9	78.2	24.5	49.6	17.7	25.5	45.1	45.2
CRST		84.5	47.7	74.1	27.9	22.1	43.8	46.5	37.8	83.7	22.7	56.1	56.8	26.8	81.7	22.5	46.2	27.5	32.3	47.9	46.8
CBST-SP	ResNet-38	85.6	55.1	76.9	26.8	23.4	38.9	47.1	46.9	83.4	25.5	68.7	45.6	15.7	79.7	27.7	50.3	38.2	33.4	44.6	48.1
CRST-SP		90.8	46.0	79.9	27.4	23.3	42.3	46.2	40.9	83.5	19.2	59.1	63.5	30.8	83.5	36.8	52.0	28.0	36.8	46.4	49.2
CRST-SP-MST		91.7	45.1	80.9	29.0	23.4	43.8	47.1	40.9	84.0	20.0	60.6	64.0	31.9	85.8	39.5	48.7	25.0	38.0	47.0	49.8

Experiment: Qualitative Results (GTA->Cityscapes)

Conclusions and Future Works

Conclusions

- Compared with supervised learning, self-training is an under-determined problem (EM with latent variables).
- Our work shows the importance of confidence regularizations as inductive biases to help under-constrained problems such as unsupervised domain adaptation and semi-supervised learning.
- CRST is still aligned with entropy minimization. The proposed confidence regularization only serves as a safety measure to prevent over self-training/entropy minimization.
- MR-KLD is most recommended in practice for its efficiency and good performance.

Future Works

• This work could potentially inspire many other meaningful regularizations/inductive biases for similar problems.

Thank you!

777777