

Beidi Chen, Rice

Weiyang Liu, Georgia Tech

Zhiding Yu, NVIDIA

Jan Kautz, NVIDIA

Anshumali Shrivastava, Rice

Animesh Garg, NVIDIA

Anima Anandkumar, NVIDIA

Human Visual Hardness

Human Selection Freq (HSF): A Visual Hardness Proxy

Human Labeling Interface

---- Ideal reproducibility

Model accuracy

Linear fit

★ Bin [0,0.2)

★ Bin [0.2,0.4)

Bin [0.4,0.6)

★ Bin [0.6,0.8)

* Bin [0.8,1.0]

Gap between Human Recognition and CNNs

Hard for Human but **Easy** for CNNs

Easy for Human but Hard for CNNs

Nail

Softmax

0.93

HSF 0.2

Oil Filter

0.998

0.2

Golf Ball

0.001

1.0

Radio

0.001

1.0

Softmax Cross-Entropy Loss

$$L = \frac{1}{N} \sum_{i} L_{i} = \frac{1}{N} \sum_{i} -\log \left(\frac{e^{f_{y_{i}}}}{\sum_{j} e^{f_{j}}} \right)$$

Angular Visual Hardness (AVH)

Given a sample x with label y:

$$AVH(x) = \frac{\mathcal{A}(x, w_y)}{\sum_{i=1}^{C} \mathcal{A}(x, w_i)}$$

where,

$$\mathcal{A}(\boldsymbol{u}, \boldsymbol{v}) = \arccos(\frac{\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|})$$

 w_i is the classifier for the *i*-th class.

Theoretical Foundation:

Soudry et al, The Implicit Bias of Gradient Descent on Separable Data, ICLR18

Toy Example: AVH vs. | |x||

Raw data

Heat map of AVH

Heat map of ||x||

Correlation between Different Measures and HSF

Spearman rank correlations

	z-score	Total Coef	[0, 0.2]	[0.2, 0.4]	[0.4, 0.6]	[0.6, 0.8]	[0.8, 1.0]
Number of Samples	-	29987	837	2732	6541	11066	8811
AVH	0.377	0.36	0.228	0.125	0.124	0.103	0.094
Model Confidence	0.337	0.325	0.192	0.122	0.102	0.078	0.056
$\ \mathbf{x}\ _2$	-	0.0017	0.0013	0.0007	0.0005	0.0004	0.0003

Discovery 1 - AVH hits plateau early even though accuracy or loss is still improving

Discovery 2 - AVH is an indicator of model's generalization ability

Discovery 3 - The norm of feature embeddings keeps increasing during training

Discovery 4 - Correlation between AVH and human selection freq holds across models

Discovery 5 - Correlation between norm and human selection frequency is not consistent

Conjecture on training dynamic of CNNs

- Softmax cross-entropy loss will first optimize the angles among different classes while the norm will fluctuate and increase very slowly.
- The angles become more stable and change very slowly while the norm increases rapidly.
- Easy examples: the angles get decreased enough for correct classification, the softmax cross-entropy loss can be well minimized by increasing the norm.
- Hard examples: the plateau is cause by unable to decrease the angle to correctly classify examples or increase the norms otherwise hurting loss.

Application I: Self-Training for Domain Adaptation

Source Domain (Labeled)

Target Domain (Unlabeled)

CBST

$$\hat{y}_t^{(k)*} = \begin{cases} 1, & \text{if } k = \underset{c}{\operatorname{arg max}} \{ \frac{p(c|\mathbf{x}_t; \mathbf{w})}{\lambda_c} \} \\ & \text{and } p(k|\mathbf{x}_t; \mathbf{w}) > \lambda_k \\ 0, & \text{otherwise} \end{cases}$$

$$\mathcal{AVC}(c|\mathbf{x}; \mathbf{w}) = \frac{\pi - \mathcal{A}(\mathbf{x}, \mathbf{w}_c)}{\sum_{k=1}^{K} (\pi - \mathcal{A}(\mathbf{x}, \mathbf{w}_k))}$$

$$\hat{y}_{t}^{(k)*} = \begin{cases} 1, & \text{if } k = \arg\max_{c} \{\frac{p(c|\mathbf{x}_{t}; \mathbf{w})}{\lambda_{c}}\} \\ & \text{and } p(k|\mathbf{x}_{t}; \mathbf{w}) > \lambda_{k} \\ 0, & \text{otherwise} \end{cases}$$

$$\hat{y}_{t}^{(k)*} = \begin{cases} 1, & \text{if } k = \arg\max_{c} \{\frac{p(c|\mathbf{x}_{t}; \mathbf{w})}{\lambda_{c}}\} \\ \text{and } \mathcal{AVC}(k|\mathbf{x}_{t}; \mathbf{w}) > \beta_{k} \\ 0, & \text{otherwise} \end{cases}$$

Improved selection

Application I: Self-Training for Domain Adaptation

Examples chosen by **AVH but not Softmax**

Method	Aero	Bike	Bus	Car	Horse	Knife	Motor	Person	Plant	Skateboard	Train	Truck	Mean
Source (Saito et al., 2018)	55.1	53.3	61.9	59.1	80.6	17.9	79.7	31.2	81.0	26.5	73.5	8.5	52.4
MMD (Long et al., 2015b)	87.1	63.0	76.5	42.0	90.3	42.9	85.9	53.1	49.7	36.3	85.8	20.7	61.1
DANN (Ganin et al., 2016)	81.9	77.7	82.8	44.3	81.2	29.5	65.1	28.6	51.9	54.6	82.8	7.8	57.4
ENT (Grandvalet & Bengio, 2005)	80.3	75.5	75.8	48.3	77.9	27.3	69.7	40.2	46.5	46.6	79.3	16.0	57.0
MCD (Saito et al., 2017b)	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9
ADR (Saito et al., 2018)	87.8	79.5	83.7	65.3	92.3	61.8	88.9	73.2	87.8	60.0	85.5	32.3	74.8
Source (Zou et al., 2019)	68.7	36.7	61.3	70.4	67.9	5.9	82.6	25.5	75.6	29.4	83.8	10.9	51.6
CBST (Zou et al., 2019)	87.2	78.8	56.5	55.4	85.1	79.2	83.8	77.7	82.8	88.8	69.0	72.0	76.4
CRST (Zou et al., 2019)	88.0	79.2	61.0	60.0	87.5	81.4	86.3	78.8	85.6	86.6	73.9	68.8	78.1
Proposed	93.3	80.2	78.9	60.9	88.4	89.7	88.9	79.6	89.5	86.8	81.5	60.0	81.5

Application II: AVH Loss for Domain Generalization

PACS Dataset

$$\mathcal{L}_{AVH} = \sum_{i} \frac{\exp\left(s(\pi - \mathcal{A}(\mathbf{x}_{i}, \mathbf{w}_{y_{i}}))\right)}{\sum_{k=1}^{K} \exp\left(s(\pi - \mathcal{A}(\mathbf{x}_{i}, \mathbf{w}_{k}))\right)}$$

Method	Painting	Cartoon	Photo	Sketch	Avg
AlexNet (Li et al., 2017)	62.86	66.97	89.50	57.51	69.21
MLDG (Li et al., 2018)	66.23	66.88	88.00	58.96	70.01
MetaReg (Balaji et al., 2018)	69.82	70.35	91.07	59.26	72.62
Feature-critic (Li et al., 2019)	64.89	71.72	89.94	61.85	72.10
Baseline CNN-9	66.46	67.88	89.70	51.72	68.94
CNN-9 + AVH	71.56	69.25	89.93	60.86	72.90

Thanks You!