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Syn-to-Real Generalization: Problem & Challenge
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Syn-to-Real Generalization with Proxy Guidance

• Why people do early stopping?

➔ Do not train too far from initialization (ImageNet pretrained weight).

• We minimize KL divergence ℒ𝐾𝐿 b/w new model and initialization.

➔ ImageNet pretrained weight as proxy guidance in syn2real training.
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Syn-to-Real Generalization with Proxy Guidance

• Why people do early stopping?

➔ Do not train too far from initialization (ImageNet pretrained weight).

• We minimize KL divergence ℒ𝐾𝐿 b/w new model and initialization.

➔ ImageNet pretrained weight as proxy guidance in syn2real training.
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Automated Synthetic-to-Real Generalization (ASG)

• Why people use small learning rate?

➔ Carefully fine-tune to avoid being far from initialization (ImageNet pretrained weight).

• But how small for which layer?

➔ L2O (learning-to-optimize): automatic control of layer-wise learning rate.
o Train L2O policy 𝜋 with REINFORCE to produce learning rate actions.
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Automated Synthetic-to-Real Generalization (ASG)

• Why people use small learning rate?

➔ Carefully fine-tune to avoid being far from initialization (ImageNet pretrained weight).

• But how small for which layer?

➔ L2O (learning-to-optimize): automatic policy control of layer-wise learning rate.
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Classification: Visda17 ➔ COCO Segmentation: GTA5 ➔ Cityscapes



• Backbone (ImageNet pretrained): closer to ℒ𝐾𝐿→ smaller LR.

• Projection head: large LR.

Action Behavior of RL-L2O Policy
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Segmentation: GTA5 ➔ CityscapesVgg16-FCN8s
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• ImageNet is a large-scale real-world dataset, it provides rich 
information about real domain.

Why ASG Works? Retaining ImageNet Information
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ASG Benefits Domain Adaptation

• ASG as initialization for domain adaptation methods.
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ASG Improves Model Attention (GradCAM)
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Thank you!
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