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Self-Consistency

!"ℎ$ %̂

ℎ
External Internal
'

Given a joint distribution !(ℎ, %, &; () parameterized by (, (*ℎ, +%, &̂) are self-consistent if 

they satisfy the following constraints:

x: images

h: encoded features

z: latent variables

y: labels 
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Generative Classifier 

Gaussian Naïve Classifier

! ", $ → !($|")

A. Ng, and M. I. Jordan. On discriminative vs. generative 
classifiers: A comparison of logistic regression and naive 
bayes. In Neurips 2002.

Logistic Regression
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Deconvolutional generative model (DGM)

DGMCNN
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T. Nguyen, N. Ho, A. Patel, A. Anandkumar, M. I. Jordan, 
and R. G. Baraniuk. A bayesian perspective of 
convolutional neural networks through a deconvolutional 
generative model. arXiv:1811.02657, 2018. 
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Inference in the DGM
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• MAP estimate of y: ŷ = CNN(h)

• MAP estimate of h: ĥ = g(0)

• MAP estimate of z (informal): ẑR = {�AdaReLU 6= 0}
ẑP = {�AdaPool 6= 0}
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Iterative inference 
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CNN-F

…

Initialization Iteration 1 Iteration 2



LXentropy(y0, target) LXentropy(y1, target)LXentropy(y2, target)
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Training of CNN-F



CNN-F with adversarial training

Reconstruction loss is always between adversarial and natural features.
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CNN-F on all CNN architectures
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CNN-F repairs distorted images
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CNN-F improves adversarial robustness

• Standard training on Fashion-MNIST.
• Attack with PGD-40.
• CNN-F has higher adversarial robustness than CNN.



CNN-F improves adversarial robustness

CNN-F trained with different iterations. CNN-F tested with different iterations.

More iterations are needed for harder images.



CNN-F combined with adversarial training

• Adversarial training on Fashion-MNIST.

• Trained with PGD-40 (eps=0.3). Attack with PGD-40.

• CNN-F augmented with adversarial images achieves high 

accuracy for both clean and adversarial data.



CNN-F generalizes better to different attacks

Trained with FGSM (eps=0.3). 
Attack with PGD-40.

Trained with PGD-40 (eps=0.3). 
Attack with PGD-40.

Feedback helps when there is distribution shift between training and testing data.



Train on CIFAR-10

• CNN-F (on Wide ResNet) 
combined with adversarial 
training. 

• Clean accuracy decreases over 
iterations.

• Adversarial accuracy increases 
over iterations.



Neuronal predictivity

• Used the fifth block and logits in VGG-16 to predict V4 and IT neuronal activities.

• CNN-F predicts V4 and IT neuronal activities better than CNN.

• Call for temporal neuronal data in the neuroscience community.



Conclusions and future works

Biological inspirations
§ Recurrent feedback

§ Generative models (Bayesian brain)
§ Attention

§ Lateral connections
§ Sparsity

Inspirations from other fields
§ Signal processing (Kalman filters …)
§ Control (Feedback control, dynamical system)
Down-streaming tasks
§ Robustness
§ Few shot learning
§ Uncertainty quantification
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